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Abstract. Actor learning and critic learning are two components of
the outstanding and mostly used Deep Deterministic Policy Gradient
(DDPG) reinforcement learning method. Although such a method plays
a significant role in the overall robot’s learning, the performance of the
DDPG approach is relatively sensitive and unstable. To further enhance
the performance and stability of DDPG, this paper introduces a multi-
actor-critic DDPG for reliable actor-critic learning, which will be then
used to create a new deep learning framework called AACHER and inte-
grated with Hindsight Experience Replay (HER). The AACHER uses
the average value of multiple actors or critics to substitute the single
actor or critic in DDPG in order to increase resistance when one actor
or critic performs poorly. Using numerous independent actors and crit-
ics is expected to gain knowledge from the environment more broadly.
The developed AACHER is validated with goal-based environments,
including AuboReach, FetchReach-vl, FetchPush-v1, FetchSlide-v1, and
FetchPickAndPlace-v1. Various instances of actor/critic combinations
are used to experimentally validate the new approach. Results reveal
that AACHER outperforms the traditional algorithm (DDPG+HER) in
all aspects of the actor/critic number combinations used for evaluation.
When combined with FetchPickAndPlace-v1, the performance boost for
A20C20 (20 actors and 20 critics) is as high as roughly 3.8 times the
success rate in DDPG+HER.
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1 Introduction

Deep Learning, a component of machine learning, employs hierarchical designs
to extract high-level abstractions from data. It has been applied in various fields
like transfer learning [31], the medical field [24], and more [21,25]. Deep Rein-
forcement Learning (DRL) [6] shows promise in robotics but faces challenges
like slower learning and high sample requirements for training [16]. Autonomous
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robots use Q-learning for various tasks, with studies on both continuous and
discrete action spaces [7,23]. Reinforcement learning (RL) [30] has been applied
to tasks like locomotion [12], manipulation [18,19,32], and autonomous vehicle
control [1]. A notable RL application is robotic hands adapting to environmental
uncertainty, with soft body robots enhancing movement over soft materials [20].
Similar applications are discussed in [21-23,26-28].

RL algorithms are classified as actor-only, critic-only, and actor-critic meth-
ods [13]. The Deep Deterministic Policy Gradient (DDPG) algorithm [14] has
performed well in simulated continuous control problems, playing a crucial role in
the actor-critic method. Experience Replay (ER) [15] and Hindsight Experience
Replay (HER) [3] enhance DDPG by improving sample efficiency and learning
from sparse rewards.

Our research contrasts DDPG with HER [26]. DDPG’s performance relies on
both actor and critic learning. Our previous work [26] used a genetic algorithm to
adjust hyperparameters, showing promising results with the Genetic Algorithm
(GA).

A study [33] suggested that multi-critic learning (MC-DDPG) and Double
Experience Replay (DER) could further enhance DDPG’s stability and perfor-
mance. Our research introduces a novel algorithm, Assorted Actor-Critic Deep
Reinforcement Learning with Hindsight Experience Replay (AACHER), based
on [5]. AACHER addresses deep reinforcement learning challenges, including effi-
ciency, reproducibility, learning transfer, and real-world application. It employs
the state-of-the-art DDPG algorithm with multiple actor-critic schemes, tested
in various scenarios. The algorithm is applied to five goal-based gym envi-
ronments with robotic manipulators: AuboReach, FetchReach-v1, FetchPush-v1,
FetchSlide-v1, and FetchPickAndPlace-v1. Results validate that increasing the
number of actors and critics enhances the learning process.

Open source code is available at https://github.com/aralab-unr/multi-actor-
critic-ddpg-with-aubo.

— Developed a novel algorithm, AACHER (Assorted Actor-Critic Deep Rein-
forcement Learning with Hindsight Experience Replay), by advancing DDPG
combined with HER.

— Utilized various combinations of actors and critics to create independent
instances for multiple actors, critics, or both.

— Computed the loss and actions using the average of actor and critic networks,
applying the updated parameters to target networks.

— Created Aubo-i5 custom environments (AuboReach) in both simulated and
real-world settings to analyze AACHER.

— Implemented four of OpenATl’s gym environments: FetchReach-vi, Fetch
Push-v1, FetchSlide-vl, and FetchPickAndPlace-vl to further test and val-
idate AACHER.

— Examined AACHER’s effectiveness using various combinations of actors and
critics in both simulated and real manipulation tasks.

— Compared AACHER’s results to DDPG+HER.

— Demonstrated AACHER’s superior performance over DDPG-+HER, high-

lighting the benefits of multiple actors and critics.
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By introducing multiple actors and critics into the DRL framework,
AACHER offers a flexible and promising architecture. Recent extensions of
DDPG include [2,9,10]. To our knowledge, no prior research has used DDPG
with multiple actor and critic networks simultaneously, making AACHER novel.
AACHER is easy to implement, reproduce, understand, and integrate with var-
ious RL state-action value-related approaches.

The remaining of this study is separated into several sections: Section II
explains the proposed AACHER algorithm. Section III explains the experiment
settings, results, and discussions. Section V explains the conclusion and future
work.

2 Assorted Actor-Critic Deep Reinforcement Learning
with Hindsight Experience Replay

Algorithm 1. AACHER

1: Create D Actor Neural networks (Policy Networks)

2: Create P Critic Neural networks (Q-Networks)

3: Initialize losses as an average of Actor and Critic neural networks
4: Initialize replay buffer R < ¢ as an empty set

5: for episodes in range (M) do
6
7
8
9

Sample a goal and initial state

g, S0 «—sample_goal_and_initial_state()

for t in range (T) do t=0, T-1

Sample an action a; using behavioral policy generated by taking an average
of policy neural (actor) networks

10: a; < sample action (actor networks)
11: Execute the action a; and observe a new state s¢41
12: end for
13: for t in range(T) do t=0, T-1

14: Compute reward for the current state-action pair and goal

15: re :=1(8¢,a¢, g)

16: Store the transition (st||g, at, 7¢, St+1]|lg) in R

17: Sample a set of additional goals for replay G := S(current episode)
18: for ¢ € G do

19: r'i=r(st,at,g")

20: Store the transition (st||g’, at,7’, st+1]lg’) in R

21: end for

22: end for
23: for iteration in range(N) do t=1,N

24: Sample a minibatch B from the replay buffer R

25: Utilizing actor and critic networks for the optimization process

26: update _actor and _critic(actor networks, critic networks, minibatch—=
B)

27: end for

28: end for
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DDPG has demonstrated good performance in several areas, although there
are still areas for performance enhancement and stability [17]. The training of
the DDPG technique is particularly sensitive to the efficiency of the actor/critic
learning process because the actor’s learning process largely depends on the
critic. By using the DDPG method and an average actor/critic, it is possible to
obtain an evident improvement in stability and performance. The details of the
AACHER approach are presented in this section (Fig. 1).

Updated
Parameters

Actors Target Actors

TARGET NETWORKS

Fig. 1. AACHER using multiple actors and critics.

Because AACHER employs D actors and P critics in its actor-critic archi-
tecture, the actor-network is represented by the average of D actor values, and
the state-action value function is estimated by the average of P critic values:

Lavg (S, w) § i(s,wi),

Qavg(s,a,0) = pZQlSdQ) (1)

where w; € w and 6; € 0 represent the i-th actor and critic parameters,
respectively. In contrast to the actions/Q-values that were previously learned,
the AACHER technique builds D/P independent actor/critic networks. As a
result, when one actor or critic gives a poor performance, the average of all per-
formers or actors/critics will somewhat mitigate the negative impact. Addition-
ally, numerous independent actors and critics can gain a broader understanding
of the environment. The actor networks are made up of a parameterized group of
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policies that are typically updated by a policy gradient, while the critic networks
are updated by Temporal difference (TD) errors [29].

Training of critics uses TD errors between the average of critics and target
critics:

Laug(0) = (r(s, @) +7Q(5,0,67) = Quug(5,0,0))”. 2)

(a) Using the most accurate policy learned via AACHER, the AuboReach environment
performs a task in a real experiment.

(b) In a simulated experiment, the AuboReach environment performs a task using the
best policy learned via AACHER.

Fig. 2. Comparison of real and simulated experiments in the AuboReach environment.

The AACHER approach is described in Algorithm 1. The procedure of ini-
tialization starts the algorithm’s initial phase. Actor (D-networks) and critic
(P-networks) creation are the first and second lines of the algorithm, respec-
tively. While the critic network assesses the Q-values (anticipated cumulative
rewards) linked to state-action pairs, the actor network parameterizes the pol-
icy in charge of choosing actions. The training losses are then calculated as an
average of the losses suffered by actors and critics. Additionally, an empty replay
buffer, R «— ¢ is made, which will be used to store training experiences. The
algorithm’s training loop is introduced and described in the fifth line. We first
sample a goal (¢g) and an initial state (sg) for each episode (goal-reaching task).
We then engage with the environment for a predetermined number of time steps
(T) by sampling actions (a;) from the Actor networks and carrying them out
to see what new states (s;11) emerge. Goals and state-action pairs are used to
calculate rewards, which are then saved in the replay buffer. Additional goals
g’ € G are sampled as well for replay, and transitions with these goals are kept
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in the buffer. We perform optimization for a predetermined number of iterations
(N) after gathering experience. To improve policy and Q-value estimations dur-
ing optimization, we sample a minibatch of transitions from the replay buffer
and update the Actor and Critic networks.

The actor-critic algorithm uses separate actor and critic networks. The actor
explores based on the state and the critic evaluates actions. A replay buffer stores
past experiences. Networks are updated to improve policy and value estimation.
This loop refines the agent’s decision-making in reinforcement learning.

The experiments are referred to by the acronym ADCP, where A stands for
an actor, D for the number of actors, C for the critic, and P for the number of
critics. As an illustration, A2C3 denotes the usage of 2 actors and 3 critics in
each main and target network, respectively, which are then averaged for training.
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Fig. 3. We present plots comparing the performance of AACHER and DDPG+HER
on the AuboReach environment. Success rate, reward, and average Q-value are plotted
across epochs, averaged over 20 runs. Each plot includes a zoomed-in view for clarity.
(AACHER experiments are denoted according to the naming convention.)
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3 Experiments

3.1 Simulated Environment

We are using four Open Al gym environments: FetchReach-v1, FetchPush-v1,
FetchSlide-v1, and FetchPickAndPlace-vl [4]. In addition to these four envi-
ronments, we are using the AuboReach environment, a custom-built gym envi-
ronment that we developed for our research. In AuboReach, the environment
comprises an industrial Aubo i5 manipulator that moves from the starting joint
state configuration to the target joint state configuration by following the actions
(robot joint states). The configurations of the initial and goal states are arbitrary.
Four joints are used in this environment for training and testing (instead of six).
The joints used are the shoulder, forearm, upper arm, and wristl. This was done
to make sure that the learning could be completed promptly. The range of each
joint is —1.7 to 1.7rad. Figures 2a and 2b display real and simulated AuboReach
settings.

Success rate vs Epochs

— DDPGHHER
A10C10
— A20C20

5 10 15 2 25
Epochs

(a) Success rate vs Epochs

(b) Zoomed - Success rate
vs Epochs
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35 — A20c20

Average Q value
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Epochs

(e) Average Q
Epochs

value vs

A=

(f) Zoomed - Average Q
value vs Epochs

Fig. 4. We compare A10C10 and A20C20 (top performers) against DDPG+HER in
AuboReach. Plots (success rate, reward, average Q) with error shading (20 runs) and
zoomed insets are shown for epochs.
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3.2 Experiment Settings

The specific settings for each experiment are covered in this subsection. Every
experiment has certain predetermined parameters. Actor and critic learning rates
are set at 0.001. Target networks’ update rates are 0.01, and the discount factor
is 0.98. A zero-mean Gaussian noise with a variance of 0.2 is added to the action
during the exploration. The training method for each experiment consists of 25
epochs, each of which comprises 15 cycles. Every cycle, the robot rolls out 100
steps, followed by 20 times robot training. The default batch size is 256. The
experience replay buffer is designed as a 10° length circular queue. All experience
tuples (state, action, reward, and next state) are saved during each trajectory
roll-out and kept in a replay buffer of finite size. When we update the value
and policy networks, we sample random mini-batches of experience from the
replay buffer. The number of additional goals used for the replay is k=4, which
means that the replay buffer will immediately retain 20% of normal transitions
with the original goal. When neural network weights grow incredibly big, L2
regularization is added to the loss. The robot’s observations are also normalized.
Adam [11], a momentum-based method, is utilized to optimize the loss function
during training. We use Ubuntu 16.04 and a GeForce GTX 1080 Ti Graphic card
for our experiment.

In each experiment, the actor and critic networks have three hidden layers
with 256 units each. This structure was chosen because testing showed that
three layers improved convergence time, beneficial for our research. AACHER
tests various combinations of actor and critic networks with similar shapes. To
ensure accuracy, DDPG+HER and AACHER were each tested 20 times.

The training was done in a simulated AuboReach environment to prevent the
robot from colliding with objects. The robot’s motors were disabled during sim-
ulation, assuming successful transitions to any action selected by the algorithms.
The MOVEit package [8] managed the planning and execution of internal joint
movements, preventing collisions.

AuboReach considers joint states successful if the deviation from the target is
less than 0.1 rad. The training objective joint states were [—0.503, 0.605, —1.676,
1.391]. Random initial and target state configurations were tested with the pol-
icy generated by training in AuboReach, and the robot successfully transitioned
between these configurations.

3.3 Experiment Results and Discussions

This subsection presents tests for the DDPG+HER and AACHER methods,
conducted in the specified simulated environments with impartial assessments.

Experiments were conducted in the AuboReach, FetchReach-vi, FetchPush-
vl, FetchSlide-v1, and FetchPickAndPlace-vl environments. The approach was
tested in various settings to validate it experimentally. Specifically, for AuboRe-
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ach, training was done in a virtual environment to prevent unexpected manip-
ulator movements. The trained policy was then tested on a real AuboReach
manipulator, confirming its efficacy despite the lack of real setup measurements.

The DDPG+HER and AACHER methods were assessed using average Q
values, success rate, and reward, plotted against epochs and averaged across
20 runs. Both methods were given equal chances to perform. In the AuboRe-
ach environment, Fig.3 shows AACHER outperforming DDPG-+HER. Vari-
ants of AACHER, even with fewer actors or critics, performed better than
DDPG-+HER, as indicated by higher success rates, rewards, and average Q val-
ues, validating AACHER’s stability and efficacy. The best-performing A10C10
and A20C20 were further compared to DDPG+HER in Fig. 4. Shaded regions
denote the range of values. AACHER converged over 11 epochs, similar to
DDPG+HER, but achieved higher rewards and Q-values during training.

Further evaluations were done in FetchReach-v1, FetchPush-v1, FetchSlide-
v1, and FetchPickAndPlace-vl environments using the top-performing A10C10
and A20C20 from AuboReach. Figure 5 shows the plots for these environments.

Figure5 demonstrates AACHER’s overall superior performance compared
to DDPG+HER in OpenAl’s gym environments. In FetchPickAndPlace-v1,
A20C20 performed best in all metrics. While DDPG+HER’s performance did
not significantly improve, A10C10 was comparable to A20C20. In FetchPush-
v1, A10C10 performed best, with A20C20 close behind, while DDPG+HER fell
short. In FetchReach-v1, all methods had similar success rates and rewards, but
A10C10 and A20C20 had higher average Q values. In FetchSlide-v1, A10C10 sur-
passed all others across all metrics, even though all methods performed similarly,
indicating this is a challenging task.

Table 1 summarizes the experiment’s findings, showing the average success
rate, reward, and average QQ values over 20 runs at the 25th epoch. Bold num-
bers indicate the best outcomes for each metric in a given setting. Some envi-
ronments show a success rate of 1, while others like FetchPush-v1, FetchSlide-v1,
and FetchPickAndPlace-vl are still below this maximum.

A10C10 has the highest success rate in FetchPush-vl and FetchSlide-v1,
while A20C20 leads in FetchPickAndPlace-v1. In FetchPush-vi, A10C10’s suc-
cess rate at the 25th epoch is nearly 3.8 times higher than DDPG+HER’s,
but only 0.4 times higher in FetchSlide-vl due to task complexity. A20C20’s
success rate improvement in FetchPickAndPlace-vl is about 3.3 times larger
than DDPG+HER’s. A10C10’s rewards in FetchPush-v1 are 50% higher than
DDPG+HER’s, and A20C20’s average Q value in FetchReach-v1 is 76% higher,
demonstrating AACHER’s superior efficiency over DDPG+HER.

Overall, AACHER surpasses traditional DDPG-+HER in success rate,
reward, and average QQ value across all tests.
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Fig. 5. We compare the two best performers, A10C10 and A20C20, with DDPG+HER
across all settings. Success rate, reward, and average Q-values are plotted for each
habitat (20 runs averaged, the shaded area shows range).
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Table 1. For each of the five environments, the success rate, reward, and average Q
value are shown in the table. The average of all the values across 20 runs is for the 25"

epoch.

Setting

‘Aubo Reach

Fetch Reach-v1

Fetch Push-v1

Fetch Slide-v1

Fetch Pick And
Place-v1

Success rate

DDPG+ HER
A10C10
A20C20

1
1
1

0.13
0.652
0.647

0.016
0.023
0.013

0.08

Rewar -d

DDPG+ HER
A10C10
A20C20

—69.3
—63.00
—64.60

—89.6
—45.00
—51.83

—90.81
—90.70
—90.8

Avera -ge Q value|

DDPG+ HER
A10C10
A20C20

—5.8
—5.49
5.66

—12.84
—5.016
5.19

—14.16
—12.74
13.06

4 Conclusion and Future Work

In this paper, we proposed AACHER (Actor-Critic Deep Reinforcement Learn-
ing with Hindsight Experience Replay), an algorithm using multiple independent
actors and critics to enhance DDPG’s performance by mitigating the impact of
poorly performing actors or critics. AACHER combines HER and DDPG, cre-
ating a more stable and reliable training environment with improved real-world
performance. We evaluated AACHER in five simulated environments: AuboRe-
ach, FetchReach-v1, FetchPush-vl, FetchSlide-vl, and FetchPickAndPlace-v1.
The configurations A10C10 and A20C20 showed the best results, consistently
outperforming traditional DDPG+HER. AACHER is versatile, allowing for dif-
ferent actor-critic configurations based on available processing power and specific
task demands, potentially exceeding the performance of DDPG+HER with more
than 20 instances. Future work will focus on making the loss function parameters
trainable and further improving the experience replay mechanism in HER.
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