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Abstract

Inspection of civil infrastructure is a demanding task, which also requires in-depth knowledge
and experience about infrastructure assets. Manual inspection is often labor intensive, making the
task more difficult and expensive. Besides, the time-consuming process of manual inspection and
omission to detect crictial damage may lead to serious failures. Automated systems can mitigate
most  of  the  adversities  stemming  from manual  inspection.  In  this  paper,  a  crack  detection
technique for civil infrastructures, like roads and bridge decks, is presented. The technique can
detect cracks of different shapes and orientation. A data set of 21,996 images of various roads,
highways and bridge decks was prepared at different times of the day and for different light
orientation conditions. Though convolutional neural network (CNN) is very popular for image
classification, it shows degradation when a deep network is used. For this reason, a 50 layered
residual learning network was used to train the data. The network shows significant successes on
different  test  cases  collected  from an  arbitrary  source,  with  a  94% percent  crack  detection
accuracy. This work provides sufficient evidence that deep networks with large datasets can be
used for crack classification without any degradation in accuracy of the network.

1. Introduction

Modern  transportation  systems  rely  on  well  performing  civil  infrastructure,  including roads,
bridges,  railways,  etc.  It  can be said that the transportation infrastructure is the backbone of
people and goods movement.. Concrete, the most widely used material to build the infrastructure
is  susceptible  to  deterioration  with  time from various  causes,  such as  repeated  overloading,
chemical processes, like corrosion, environmental effects, and many more. Internal deterioration
in  concrete  will  lead  to  formation  of  defects,  most  notably  to  cracking  and  delamination.
Presence of such defects will affect the performance and longevity of the infrastructure asset.
Therefore, regular inspection, and corresponding maintenance activities, is needed to retain the
performance and prevent premature failure. Manual inspection of concrete elements, in particular
detection  and characterization  of  cracks  is  time consuming,  labor-intensive,  error  prone  and
uneconomic.  An  automated  inspection  system,  which  can  assess  the  condition  of  an
infrastructure asset in a continuous manner, is critically needed. Automated inspection system for
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civil infrastructure was addressed in many studies, including more recently by Gibb et al. (2018);
La et  al.  (2013);  La  et al.  (2017),  Cha  et  al.  (2017).  Crack detection in  concrete  has  many
challenges.  The  crack  shape,  orientation  and  the  background  varies  with  structure  and  the
environment they are in. The illumination, noise present in real time crack images also makes
crack detection challenging. There are many traditional image processing techniques, which fail
in cases of crack detection due to the variability of real time images, as mentioned in Cha et al.
(2017). There have been studies showing results, where state-of-the art edge detection techniques
were used, like canny edge detector, sobel operator fails to classify crack in concrete smoothly,
e.g. in. Prasanna et al. (2012); Sham et al. (2018). In addition, Laplacian of Gaussian transforms
have been previously used for extracting image cracks, e.g. by Lim et al. (2014). However, the
factors enabling a real time crack detection, as mentioned above, degrade the performance of
such techniques.  Some machine  learning techniques,  such as  SVM (Prasanna et  al.  (2012)),
Adaboost and Randoom forest (Prasanna et al. (2016)), CNN ((Gibb et al. (2018); Cha et al.
(2017);  Dinh  et  al.  (2016)),  were  previously  used  for  crack  classification  in  concrete.  As
mentioned in Cha et al. (2017), deep architectures like CNN, and large data sets collected in
varying conditions are needed for detection of cracks from images in real time. Various deep
CNN structures are used for classification of cracks, such as AlexNet designed by Krizhevsky et
al.  (2012), or VGGNet represented by Simonyan et al.  (2014). The deep CNN structures are
subject to degradation (in accuracy) and optimization is a problem when more layers are added
to the network (He et al. (2016)). Therefore, considering the factors of crack detection, using a
deep CNN structure could be a challenge. To address this problem, a residual learning network
designed by He et al. (2016), widely known as Resnet, is used in this study to recognize cracks in
images.  With  residual  learning  approach,  significant  improvements  are  made  in  the  crack
detection, and with less complexity. The following sections provide a discussion on the residual
network  architecture  and  training  process,  experimental  data  collection  and  results,  and  the
conclusions of the study.

2. Methodology

Deep residual learning network designed by He et  al.  (2016) was used in this study for the
classification purpose. The performance of a very deep network degrades, as well as optimization
issue of hyperparameters occurs, when more layers are added to the network. These problems
can be resolved by using a residual mapping instead of adding new layers into a CNN to the
underlying mapping. Therefore, a 50 layer deep network with a residual mapping function is
used in this study. The complete workflow of the system is represented in Figure 1.

Figure 1. The work flow of the proposed system.
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2.1 Network Architecture

The CNN architecture consists of a fifty layer deep network with residual learning function. The
input layer takes an image of a size of 256x256x3. Those represent the height, width, and the
number of channels of the image. It is first fed to the network. The input image is passed through
a 7x7 convolutional layer, which outputs a 112x112 image. A 3x3 maxpooling is performed on
the  image  after  that  results  with  an  output  of  52x52  dimensions.  The  residual  function  is
performed on each three layer stack consisting of 1x1, 3x3, and 1x1 filters.  Later, a global
average pooling is performed on the network, followed by a 1x1 soft max activation in the fully
connected layer. Table 1 represents the architecture of a fifty layer resnet network.

When extra layers are added to construct a very deep network, it is more efficient to map these
layers into a residual function, rather than mapping the added layers to underlying mapping of
the network. Let us assume that the underlying mapping of an added layer is H(x), where x is the
input of the first layer. The residual mapping of the added layers would be F(x) : H(x)-x. Using
the equation  F(x)+x, a shortcut connection can be added to after a number of stacked layers,
consisting of existing layers and added new layers. This residual learning function is applied to
every few stacked layer. Initially, Resnet by He et al. (2016) uses a 32 layer architecture and is
applying residual learning in every two layers with 3x3 filters. However, in Resnet with 50 layer
a building block is designed with applying a residual function in every three layers. The stacked
layers consist of filters with 1x1, 3x3, 1x1 dimensions, respectively.

2.2  Training with Residual Network and Crack Detection

For training the aforementioned network architecture, a data set containing images of 256x256
dimensions have been prepared. Images of different road and bridge deck surfaces with different
illumination, intensity and crack orientation are added to the training set. A fully connected layer

Name of the Layer Output Size 50 Layer Organization

Conv1 112x112 7x7, 64, stride 2

Conv2_x 56x56

3x3 max pool, stride 2

        1x1, 64
        3x3, 64         x 3
        1x1, 256

Conv3_x 28x28
        1x1, 128
        3x3, 128        x 4
        1x1, 512

Conv4_x 14x14
        1x1, 256
        3x3, 256         x 6
        1x1, 1024

Conv5_x 7x7
        1x1, 512
        3x3, 512         x 3
        1x1, 2048

1x1 Fully connected layer 

Table 1. Architecture of fifty layer residual network.
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over the 7x7 convolutional layer of a typical Resnet architecture (He et al. (2016)) was used in
this study. The network parameters were optimized using a Stochastic gradient descent (SGD)
value of 0.01. The network was trained with 80 epochs, where weights were updated in each
epoch. The initial weights were assigned randomly, rather than using the weight of the state-of-
the-art IMAGENET data set.

A real time image of road or bridge deck surface can contain multiple crack types of different
orientation. There may be sub parts of an image where non-cracks exist. To identify different
patches of an image as a crack and non-crack, it is effective to subdivide an image. Therefore, an
image of an arbitrary size is taken as input, and the image is then divided into sub images of
256x256x3 dimensions (height, width, channel). The images are then fed one by one into the
CNN. After that, the images are stitched back together with a classification as crack or non-
crack. 

3. Experimental Results

The fifty layer residual network architecture classifies image in two classes as crack or non-
crack. The trained model is compared with the CNN structure proposed by Gibb et al. (2018). In 
this section, the data set preparation and results by our experiment is discussed elaborately. 

3.1 Data Set Preparation

Data were collected from two types of infrastructure assets, roads and bridge decks in particular,
during different day and night times, as well as with having shadows and different backgrounds.
To capture images, an autonomous robotic system with NDE sensor fusion method, represented
by Gibb et al. (2018), was used to enable in-depth data collection in a limited inspection time.
The Seekur Jr mobile robot from Omron Adept Technologies, Inc. was used as the base platform
for the robotic system designed by Gibb et al. (2018). The Seekur mobile robot system was used
previously by La et al. (2013) and La et al. (2017) for civil infrastructure inspection. However,
Seekur Jr is more suitable for civil infrastructure inspection because of its mobility in adverse
conditions, as reported by Gibb et al. (2018). Moreover, we have included some arbitrary images
from various online sources, so that the system is not biased toward certain camera specification.
The collected images have been subdivided into 256x256 pixels regions, and labelled manually
into crack and non-crack classes. Images containing major cracks were included in the data set,
while images with minor cracks were discarded. After that, data augmentation was performed on
the crack images.  For this  purpose, a crack image is  flipped horizontally and vertically,  and
rotated ninety degrees left and right. Besides, some crack images are included by decreasing
brightness of images, so that the trainer can recognize cracks in very low contrast images. To
decrease brightness, we have used the equation,  I=I ⋅α +β ,  where I is an image pixel, the
value of α is set to 1, and β is set to -80. The data set was partitioned into two sets for training
and validation. The training set contained 21996 images of 256x256x3 dimensions in the crack
class, and 22000 images in the non-crack class. 300 images of crack and non-crack classes were
taken for validation of the trained module.  For testing, the training performance test set was
created, including various images available online. The test set consisted of 326 images in the
crack class, and 301 images in the non-crack class. 
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3.2 Result Analysis

The accuracy of our method is measured using the following formula:

Accuracy=
Number of correct classification

Total number of instances
The residual learning network achieved 94% accuracy after testing on a test set of 627 images of
crack and non-crack classes, while the CNN model proposed by Cha et al. (2017) and Gibb et al.
(2018) achieved 89.8% and 96 % accuracy respectively (trained with same data set). Besides, six
images of 3486x5184x3 dimensions were taken and fed into the system. The result showed that
the Resnet model can identify cracks more accurately than Cha et al. (2018) and classifies less
false positives than the CNN model by Gibb et al. (2018). Table 2 shows some examples of the
crack detection result of Resnet model, CNN model by Gibb et al. (2018) and Cha et al. (2017).
Though the CNN model by Gibb et al. (2018) detects more crack pixels, it detects more false
positives, in comparison to the Resnet model. In some cases, the Resnet model detects more
crack pixels as shown in Image1 of Table 2 than the other two CNN structures. Some cases show
that the Resnet detects less crack pixels than the CNN model by Gibb et al. (2018). However,
Resnet outperforms the CNN model by Cha et al. (2017) in all cases.

Table 2:  Crack detection result on several images using three different processes. The correct or false classification
is identified by how many 256x256 blocks are classified as crack class

Input image CNN model  by Cha et al.
(2017)

CNN model by Gibb et al.
(2018)

Fifty layer Resnet model

Image1 Correct = 7, Incorrect = 0 Correct = 8, Incorrect = 0 Correct = 11, Incorrect = 0

Image2 Correct = 18, Incorrect = 0 Correct = 26, Incorrect = 2 Correct = 23, Incorrect = 0

Image3 Correct = 20, Incorrect = 79 Correct = 24, Incorrect =16 Correct = 24, Incorrect = 14

4. Conclusion

A 50 layer deep residual network was trained using a dataset of 43996 images. The results show
an improvement in crack classification over a shallow CNN structure. It was shown empirically
that  deep networks  with large  data  sets  can be used for  classification of  cracks  in  concrete
without  concerns  regarding  the  degradation  problem typical  for  deep  networks.  Though  the
Resnet comes with different number of layers,  a fifty layer Resnet can identify cracks more
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accurately than a 18 layer or 32 layer Resnet architecture. In the future work, the performance of
other Resnet architectures with 101 layers and 152 layers will be analysed. Besides, the current
Resnet architecture falsely classifies some of the crack blocks and some minor crack blocks as
non-crack. The aim is to improve accuracy for minor cracks in concrete. Moreover, the images
blocks that are fed into the system consist of 256x256 blocks. It is believed that smaller blocks
for  training  and classification  will  improve the  network performance.  The goal  is  to  further
investigate the ideal size of image blocks for classification.
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