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Real-Time Human Foot Motion Localization
Algorithm With Dynamic Speed

Luan Van Nguyen and Hung Manh L8enior Member, IEEE

Abstract—One challenging problem for human-machine sys-
tems is to accurately estimate the position, velocity, and attitude
of human foot motion, using an inertial measurement unit (IMU)
sensor. This is particularly so in large environments affected by lo-
cal magnetic disturbances. In this paper, we propose an algorithm
that not only handles this problem, but also works efficiently in real
time. The novelty of this paper lies mainly in two contributions:
First, we propose a dynamic gait phase detection (GPD) method
that can detect human foot gait phase with high accuracy (2.78 %
errors) in dynamic speeds of human foot motion, such as walking
or running; second, we integrate an inertial navigation system, a
GPD, a zero velocity update, and an extended Kalman filter in
real time. The system can, thus, handle the IMU drift problem, as
well as noise, for high-accuracy localization both indoors (0.375%
errors) and outdoors (0.55% errors). To validate the proposed algo-
rithm, we apply the motion-tracking system (MTS-ground truth),
and the results show that 93.7% of the proposed algorithm’s re-
sults converge on the MTS’s results within a distance of less than
7.5 cm. Hence, the proposed algorithm can be embedded in
wearable sensor devices for practical applications.

Index Terms—Extended Kalman filter (EKF), gait phase detec-
tion (GPD), human foot motion localization, inertial navigation
system (INS), real-time localization, zero velocity update (ZVU).

|. INTRODUCTION

devices. For instance, IMU is used for localization and tracking
of human motion [16]-[18], adopting different approaches for
detection of human foot gait phase. For example, inertial navi-
gation system (INS)+zero velocity update (ZVU) methods and
Bayesian lter-based sensor fusion [1], [10], [12], [19]-[24] are
used to deal with IMU drift. Additionally, unscented/extended
Kalman Iter (EKF) [13], [15], [25]-[28] and particle Iters[29]

are applied to increase the accuracy of localization. However,
these approaches lead to travel distance errors of up to 10%
[13], [14], particularly in environments with local magnetic dis-
turbances. In addition, current algorithms do not run in real time
and only address certain foot motion speeds; these limitations
can inhibit the algorithms’ practical application. For example,
in our case, we are interested in developing, by applying hu-
man foot localization using an IMU sensor, a smart embedded
wearable device: A smart shoe for building a real-time 3-D map
[30], [31]. This requires attachment of 2-D laser range scanners
and an IMU sensor to the shoe for obtaining highly accurate and
real-time human foot localization. Another importance exam-
ple that requires real-time dynamic foot localization is providing
ef cient support to monitoring of human health state and gait
malady analysis [32], [33], 3-D human skeleton localization
[34], human-robot interaction [35], etc.

I NDOOR localization has many potential applications, such The two main contributions of this paper are the following:
as searching and rescuing in emergencies, guiding visitaisdevelopment of a dynamic gait phase detection (GPD) algo-
in navigating complex environments, security purposes, etc. rithm for accurate detection of human foot gait phases (swing
Pedestrian dead-reckoning methods [1]-[3] address the prafg stance) in dynamic speeds, such as walking and running;
lem of tracking human foot motion by utilizing step lengthand 2) development of a real-time and accurate foot motion lo-
velocity, and orientation. Technologies, including ultrasounggjization algorithm, which can integrate the GPD with a ZVU,
short-range radio [4]-[7], global positioning system (GPS) heuristic heading reduction (HDR), and an EKF to address
(8], [9], laser range scanner [10], and vision technology [1}ju drift and noise in environments affected by local magnetic
are incorporated for higher accuracy in localization. Howevelisturbances.
their deployment is highly expensive, and their maintenanceThe remainder of this paper is organized as follows. Section II
is complicated. presents an overview of the human foot motion localization
Human foot localization algorithms hold promise for usscheme. Section Il analyzes human gait motion. Section IV
ing with inertial measurement unit (IMU) sensors [12]-{15]presents a real-time human foot motion localization algorithm.
because the technology is not dependent on installed infragsction v applies the motion-tracking system (MTS) to verify
tructure; besides, they can be integrated with wearable seng proposed algorithm’s accuracy. Section VI presents experi-
mental results to demonstrate the effectiveness of the proposed
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step i The middle module includes three components: a GPD, a ZVU,
i3 Q2 i-1 i i+l i+2 and an HDR. The GPD detects the stance and swing phases
Footsteps of human foot gait from IMU’s data. Then, the ZVU and the
Fig. 2.  De nition of subscripts and superscripts. HDR utilize these data to estimate the error measurement vector

m!*1, which are the most important input data for the success

of the EKF algorithm. Because the EKF requires kinematically
gyroscope for measuring angular rm@”, and a magnetome- related measurements of position, velocity, and attitude, it has
ter for measuring magnetic eld of the Eamlj"*. The subscript to rely on the supports from the GPD, the ZVU, and the HDR.
bin these formulas refers to the value of these variables in theThe top module includes an INS and an EKF. The INS sys-
body frame of the IMU device; the superscript 1 refers to tem alone cannot cope with the IMU drift. The EKF, with a
the value of these variables at discrete time1 in the IMU's  properly constructed sensor fusion, can estimate the IMU bi-
time series, as shown in Fig. 2. Certain IMU models availabigses; therefore, it can help the conventional INS in reducing the
in the market are integrated with the GPS, but no such integigtU drift. The EKF estimates the errors of actual acceleration,
tion is considered necessary to our IMU device, because we @ggocity, and position of human foot motion, by taking the error
concerned with only that localization algorithm, which worksneasurement vector from the middle module and the feedback
in environments that have no GPS support. data from the output of the INS (see Fig. 2). On its turn, the INS

Since the IMU normally outputs the data of acceleratiff, receives IMU’s data and the state measurement errars™!

angular ratavy*", Earth’s magnetic eldoy™*, and the quater- from the EKF to continuously compute, via dead reckoning, the
niong'*!, we need to derive the Euler rotation angles, i.e., rofelocity, attitude, and position of human foot motion.
( ¥+, pitch ( '*1), and yaw ('*1), from these raw data. The
IMU’s quaternion is a vectog'**(x, y, z, w), and the conjuga- 1
tion (¢'*1)* of ¢'*! is a vector, which are obtained as follows:

. . ) . . A. Dynamic Human Gait Phase Detection

t+1lye — ¢ t+ _t+ ot t+

@) =700 -a7 0 -7 @.a7 W) @) Obtaining high accuracy in human motion localization, us-
Then, the Euler angles of rotation, i.el*!, t*1 and t+1, ing IMU sensors, is challenging because it depends greatly on
which rotate along theX -, Y-, Z-axes, respectively, can bemMultiple factors: the drift of the IMU sensors, its position on

. HUMAN GAIT MOTION ANALYSIS

obtained as follows: the Earth, and the local magnetic disturbances from the external
environment. Fortunately, human foot motion gait comprises
et f1(g" (x)) two phases, i.e., stance and swing [36], [37], as shown in Fig. 3,
= (g (%)) (2) which can be utilized to estimate IMU drift and the effects of
t+1 f3(qg'*1(x)) environment. In the stance phase, the human foot stands on the

ground, and therefore, its actual velocity is zero. Hence, if the
where IMU’s velocity of foot in this phase is different from zero, it
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must be the error due to IMU’s drift. Therefore, we can apply 25T - -

the ZVU algorithm to reduce IMU's drift and enhance the accu- & | =—stance Condition g

racy of localization. Therefore, the accuracy of the stance phase %20 - == =Delay of Stance Condition r',t d

detection, in real time, is crucial to obtaining higher accuracy of =15 Gait Phase Detection (1 }

human foot localization. Furthermore, the accuracy of human 0

foot motion GPD depends on a person’s physical characteristics f

and foot motion speeds. This leads to a very important ques- 5t [ ?

tion as to how to detect the stance phase accurately in dynamic 0 .‘,Stance il Ing:Ehaze P

motion speeds. ; . . ;
However, the current algorithms do not run in real time and N Step i-1 of motion v

only address certain human foot motion speeds. For example, the 162 164 T}a‘i—g“gﬁﬁe (:;’-0 172 17.¢
algorithm in [14] is limited to normal walking speed and that
in [13] to of ine GPD, which relies on prede ned thresholdsFig. 4. Human gait phases detection at foot stepl.
of acceleration and angular rate. Hence, these algorithms may
not yvork_ for diff_erent human characteristics and speeds of foottnen, the dynamic gaid‘gﬁl (attimet + 1 of ith foot step) is
motion, in real time. '
To solye this problem, we propose an ef cient method th?rﬁvious and current valuesdg*il:

automatically computes and updates threshold values throug :
real-time operation and varying foot motion speeds. Therefore, drl+dt . +dtl+db 2+ o3

. . . t+1 _ 9.1 g.l g.l g.i g.i 9
the proposed algorithm can effectively detect human foot motion Sci = 5 : )

gait phase in different speeds, such as walking and running. Itis to be noted that (9) uses ve previous and current values of

First, we present the dynamics of sensor d%fal at time di*1, but this can be changed depending on the type of IMU.

. . g.i
t.+ 1 OL'lth fOOtt step from the changes in chal aiclcelera If t + 1 is a discretized time during thi¢h foot step of the
tion (la — a}ycari)), magnitude of accelerational,’ —

local i . foot motion, then the delay of the stance conditjit of st**
a!, ), and angular rate magnituded;” ! — w!, ;|) as follows: y Rl el

is obtained as follows:

used to compute the values of stance condigidyt from some

t+1
local.i

t+1

m.i t+1

to _
m('3|) R ikt Yid (10)

.
where the real motion of acceleration in the North East Down o 0 2 o o
(NED) of the Earth coordinate system [14], [38] can be obtaind¢here the initial value o§; ; can be initiated by 0.8, which is
as follows: the experimental result of a threshold of normal walking speed.

*a}ocal.i| + ‘w —w

1_ 1
dg" = lag i — am i +a

1 1 If maxtj;li is the max changing speed for the difference
a, =a,- —g (4 b %-Fl t+1
m.i e.i e etweers,’;~ ands_’;", then we have
whereg, is the gravitational acceleration vector Sl gl gl
ma. +1 c.i d.i — “c.i (ll)

ge = (0.0,0.0,9.8 m/s’) (5) “ 7 st otherwise
and the acceleration of motion in the NED system can beLet us de ne s. as an array of all discretized points
obtained as follows: a1 el -1) . .

Se.ii-1) (the greenline in the swing phase of Fig. 4), agd; 1)
at+_1 — qt+1 at+_1 ( t+1)* (6) . . Lot . .

e.i Gy i -\q as an array of all discretized p0|r$§.(i71 during the swing
wherea} ! is the acceleration of the IMU in its body frame apPhase of the foot step— 1 (the red-dashed line in the swing
timet + 1 of theith foot step. phase of Fig. 4). i _

The local acceleration|, "}, . is obtained as follows: The maximum value of the stance conditislf}; ,), during
) a1 _ the swing phase of the— 1 foot step,Mc(sc(i_1)), is, thus,
(a:;cél.i)z — T Z (a::il _ ajave.i)z. @) computed as

j=t-2f MC(SC.(i,l)) = MaX{SE:?71)|52:%71) S SC_(i,1)}. (12)

It is to be noted that (7) is computed in real time. The, £y 4 Mc point is inside the blue circle with thdc label.
main dlffer'ence, co_mpared with thg current of ine algorithms Similarly, the maximum value of the delay of the stance con-
_[13]—[15], is that thls formula requires o_nIy data for ?Omp“taition Sgr(il_l), during the swing phase of the- 1 foot step,
ing local acceleration from some immediately preceding stepl)se. Md(sq (1)), is, thus, obtained as
The superscript in (7) represents data from time step-1, d.(-1)/» "= :

](cjaiinlgs t;?ecrl)(s;o the previous time stepk + 1 (for example, Md(sq. 1)) = Max{sgf(il_lﬂggf(il_l) €sdai-n} (13)

The average acceleratitmﬁve .in (7) is, thus, computed as InFig. 4,Md ppint isinside the yelloyv circle with twd Iapel.

R The dynamic threshold ‘thof the ith foot step is obtained
- 1 ! as follows:
el =51 > ap;. ®) i
k=] —2f -1 th' = Mc(sc-1)) —Md(sq.(-1)) (14)
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where the initial value of thdepends on the IMU sensor, which;
in this case, is 0.8, the experimental threshold of a normal wal

Algorlthm 1: DYNAMIC HUMAN GAIT PHASE (DGP)
ETECTION.

ing speed. In general, for an arbitrary IMU, the initial thresholet
value can be selected from 0.5 to 1. Sinck itha dynamic

threshold, it helps the human foot motion localization algorithm
in adapting to speed changes in foot motion. This threshold i

body system {(ajt, wit!)

free from any prede ned threshold value and depends only M rr1> 2f + 1 then

Input: Real-time acceleration, angular rate vectors at
discrete times ¢ 4 1 of the foot step 74, in IMU

SOutput True:Stance Phase, False:Swing Phase

the speed of motion. It increases when the motion speed Ln- /IThe local acceleration; j < ¢
creases a.nd vice versa. Hence, !t can wprk with any persop’s while (j < t)and(j > (t — f)) do
gait and different motion speeds like walking or running. ke (- f)
From (14), we can obtain the dynamic human gait detectign while k < j do
gy as follows:
6 L a(we 7 — a'(l’UE 7 + ab 7
1 )0 ma +1 <th' (stance phase) 15) ' _ pe +11) _
%.i 6, otherwise (swing phase) 8 ave.i 2 +1 wve.i
(afjc}ll 1)2 — (a}tjcill 1)2 + (O’Ztl a-ZJ‘/Ue i)2
wheng;' = 0, the gaitis in the stance phase, and whgjt = je (-1
6, it is in the swing phase. -
The summary of the dynamic gate phase (DGP) detectlon| (al},.)? « 57T 7(a Aear i)
algorithm is presented in Algorithm 1. 2 else
We tested the DGP detection algorithm with dlfferentwalklr]g jet
and running speedsinthe hallway onthe rst oor of the Applieg, J A
Research Facility building, University of Nevada, Reno (UNR) | while k < ; do
campus. The results of this test in detecting the swing and stance J
phases are shown in Fig. 5. w L Z“f_g Z(k:rafs”e itals
The experimental results [see Fig. 5(b)] are collected for d|f- 1 4
ferent human foot speeds: slow walk (0.85 m/s), normal waik | (a.l}, )2+ ——al ..
(1.38 m/s), fast walk (1.92 m/s), and slow run (5.7 m/s). The — kt1 b1
peaks of max changing speed [blue line in Fig. 5(a)] cleaty//The dynamlcs of sensor data; d ;"
change, following the speed change. The dynamic threshold (a7 = Qlocaril + lan i —ab, |+ wii i —wl,
values [green line in Fig. 5(a)] are updated and adapted aftef/ The stance condition;
each gait circle of this test. As a result, the DGP algorithm can t+1 dtH + dt dt ' dt_'g + dtg._f
detect the human foot gait phases [red line in Fig. 5(a)] correctly. 5
The average error, detected from over 50 different DGP testg! i The delay Of the fﬁnce condition;
1in 36 steps, which is equivalent to 2.78%. sl Sii T Se
22 //The max changing speed
B. Zero Velocity Update Algorithm 23 if 5f+1 < st+1 then
As mentioned in Section 11I-B, whenever the GPD algorith#f ‘ maxiﬁ s
detects the stance phase of human foot motion gait, the Z¥(flse 1 "
algorithm [12], [13], [15] can measure the bias velocity, which MaTeq; <= Sq;4
helps in xing the error due to IMU’s drift. Hence, the ZVUz7 //The a maximum value of the stance condition;
algorithm is important in enhancing the accuracy of the human Mc(s.. ;1)) Ma;p{sfﬂ |si+11 1 € Se(i-1)}

foot localization by using IMUs. Without loss of generality, wg p7(s,, (1) ]\/[ax{st'H
can assume that each gait of human foot motion occurs over a//The dynamic threshold;
duration of[T; — T;, T;], whereT; is the discrete time at the  ;pi  (Me(8e.i-1)) — Md(s4.6-1)))
end of the stance phase of tih foot step, as shown in Fig. 259 //The dynamic human gait detection

The bias errorjt* of acceleration at timé+ 1 = T; of foot 3, if maz't! < th' then

1)|5d (i-1) € Sa.G-1}

motion in the stance phase can be obtained as follows: 31 ‘ return True
- vﬁfl:T' 32 else t .
be = ' (16) | return False
I

Then, from (16), the bias error of acceleration in the NED system Ve can now compute the bias error of acceleration in the IMU
can, thus, be obtained as body frame as

t+1 — t+1

Qepe — Ompe + Ge- (17) aﬁ;é = (qu) aé-t‘)—el'qt*—l' (18)
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Algorithm 2: REAL-TIME DYNAMIC SPEED OF
HUMAN FOOT MOTION LOCALIZATION ALGORITHM

(INS/EKF+ZVU+HDR).

1 Initiate : attime t+1 =1

w10
1|0
P |

4 M

+~—0

0

11 110
NeD < Mygp

5 ContinuedLocalization < True

Input: Real-time acceleration, angular rate vectors at

time ¢ + 1 in the IMU body system (aj ™", wjtt)

Output: Publish the Real-time velocity, position and

attitude in the NED system: v+1 pt+1 MEH

6 while ContinuedLocalization = True do

7
8

10

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35

36
37

38

1w

9

SXU 56Xt (8¢t w', 5pt, bvt, Sal)

//DGP is DynamicStanceDetection() function as
presented in Algorithm 1.

if DGP(aj™, wit!) = True then

e
5b+| “ 2+1
tH1t
Jwb’L‘ <—wZ"r1

S« HDR(5¢,r,)
mbtl — Syttt 5w£+1\27 5vt+1|t)

else

L mt+l P mt
XU @HIs XUt 4y,
Pt‘tt — (115><1\; *thth)Ptlt_l(Ilsxlo -

K'H)" + K'R'(K")T
Pt+1‘t « Qtpﬂt(q)t)T + Qt
Kt Pt+1|tHT(HPt+1\tHT+Rt+1)71
SX UL o sx Iy I [t - HX
Swl T s x itk (g )
Sal I s x I (13 ¢ 15)
Sul T s XL (10 ¢ 12)
Spi Tt s xtHlttL(7 . g)
wffl — wZH 5'wz+1|t+1
af}tiﬁ " t|t6 2“2"51“ 1082, AL
Mygp — M‘NED Taso—0%0 Al
altl e« Mygh-apt —g,
i1ttt —|—a§,+1 At
pitllt  ptlt | gt+llt . Ay
UL L]t _ sttt
PR Ll gyt

(141, 20553400, 1]t
Mygp < 5550 " MnNED

if QuitLocalization = True then
ContinuedLocalization < false
Publish(v”””l,pt+m+1,M§V+El‘l’;+l)
else
t Publish(,UH»l\Hl’pt+1\t+l’MELEl\ngl)

return True

Ok Latenor 108 me

82 e

Fig. 8. Tracking of shoe’s movement around the ARA lab by MTS.
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Fig. 9. Plotting the trajectories of both MTS and the proposed algorithm.

( )} of both the IMU and the MTS are also equivalent. Hence,
the rotation matrix®}, *, which converts the MTS’s data from
the MTS body system into the MTS’s NED system, is obtained

by the same formula aMﬂgD in (39)
Ry = Mg, (53)

We name the position collected from the MTS for a marker
m at timet + 1 on the shoe in the MTS’s body frame g"*
= (x§FL,yirt, zHY). The transformed positioplyicp of this
marker in the MTS’s NED system is obtained as

pEn+l\JI-ED = R}\AHPEnH- (54)
The IMU’s moving pointp!*1t*1 in the proposed algorithm
at timet + 1 is obtained as in (50). Because the markers and
IMU are mounted on the same shoe, the starting points of
the markerm and IMU in the proposed algorithm at starting
timet + 1 = 0 are equivalenp?, \ep = p°°. Otherwisep®l® is

the original point in the IMU’s NED system. Hence, itis neces-
sary to transform the original position of the IMU’s NED system

validation, it is important to calibrate them in the same coordinto the MTS’s NED system as follows:
nate system. The easiest way to do this is to transform the data of +1 t

both MTS and the algorithm into the NED system. To transform

Pm NED.MU — P L 4 Pm NED- (55)

MTS’s data into the NED system, we mounted a 3DM-GX3-2Bfter transforming the data of both the MTS and the IMU algo-

IMU on an L calibration frame (see (1) in Fig. 7), a tool forithm into the same coordinate system by (54) and (55), we plot
calibrating and building the coordinate system of the MTS. Thikem on the same gure (see Fig. 9) to compare their accuracy.
makes the coordinate system of IMU and the L frame equiva-In Fig. 9, the dashed-dotted line and solid line present the tra-
lent. Therefore, the Euler anglésoll ( ), pitch ( ), and yaw jectories tracked by the MTS and the proposed IMU algorithm,
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Fig. 10. Error between MTS and the proposed algorithm trajectories alohig- 11.  Convergence of the proposed algorithm is over 93% for an error range
x- andy-axes. of 7.5 cm around MTS'’s results.

respectively. The exact difference between these trajectories de- TABLE |
notes the error of the proposed algorithm. In this validation, MICROSTRAIN 3DM-GX3-25 IMU’S GENERAL INFORMATION

the difference distance is 45 mm, whereas the traveling dis-

tance around the ARA lab is 13.4 m. Therefore, the average Speci cations Values
error in the total traveling dls_ta_mce is approximately 0.3_35%. To Data output rate up to 1000 Hz
further demonstrate the validity of the proposed algorithm, we Baud rate 115 200 to 921 600 bps

plotted the trajectory error between the MTS and the proposed Power consumption 80 mA @ 5V with USB

algorithm alongx- andy-axes (see Fig. 10) and found that the

maximum error is small, around 280 mm.
TABLE Il
MICROSTRAIN 3DM-GX3-25 IMU’S SPECIFICATIONS

B. Empirical Demonstration of Convergence

To demonstrate the convergence of the proposed algorithm Speci cations Accels Gyros Mags
in the MTS, we use the probability density of the difference Measurerange 5 +300/s L5
between them. The difference function is obtained as follows: Nonlinearity 1+0.1%fs  +0.03%fs +0.4% fs

41 41 41 41 Bias stability +0.04 mg 18/h
dif f(PrmneD Prnepivu) = Pined — Prmneoavy)-  (56) Initial bias +0.002 g +0.25°/s +0.003 G
Factor stability +0.05% +0.05% +0.1%
The probability density of the differences is computed by Noise density 8Qugl/Hz  0.03%/sh/Hz  100uG/y/Hz
Alignment error +0.05 +0.05 +0.05

Sampling rate 30 kHz 30 kHz 7.5 kHz

F(dif f(PhneD: Poani )
probyrsimu = mNEnD m NED.IMU (57)

where f is the frequency function, and is the num-
ber of points on the MTS's trajector){,p}n’f,\}ED}, andt+1 are presented in Tables | and Il. We implement the algorithms

€ {1,2,..,n}. Because the responding rates of the MT® the C++ language and run them on the Hydro Robotic
and the IMU are different, and the MTS is considered dgperating System platform. The real-time stream data from this
the ground truth for this validation, the number of total elemen&M-GX3-25 IMU sensor is processed by the proposed algo-
nin (57) is exactly the same as the number of total elementsfifhm. We initialized the process noise covariance magix=
the MTS’s datasefp'; k-5 }. The results of the probability den-diag(10~*,104,10,0,0,0,0,0,0,10°%,107%,107%,0,0, 0).
sity, plotted in Fig. 11, prove the convergence of the proposééieé measurement noise covariance mahand the estimated
algorithm with the MTS’s results (93.7% of the proposed alg@!Tor covariance matri° are initialized by (42) and (43),
rithm’s results are convergent with MTS’s results in the smaliespectively.
error range of less than 7.5 cm).

A. Indoor Localization Tests

VI. EXPERIMENTAL RESULTS We tested the algorithms with different walking speeds in
In this section, we implement the proposed algorithrine hallway on the third oor of the Scrugham Engineering and
(INS/EKF+ZVU+HDR) and compare it with two other algo-Mines (SEM) building at the UNR campus.
rithms: the INS/ZVU and the INS/ZVU+HDR. For this, we Fig. 12 shows the results of comparison among
mount a MicroStrain 3DM-GX3-25 IMU sensor on the shoe fathe three algorithms: INS/ZVU, INS/ZVU+HDR, and
testing them (see (3) in Fig. 7). The speci cations of this IMUNS/EKF+ZVU+HDR. It can be seen that the INS/EKF+ZVU
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Fig.12. Two-dimensional trajectories plotted on the hallway of the third oor,
SEM building, UNR campus.

+HDR algorithm outperforms the other two, because its
walking trajectory closely matches with the hallway of the
SEM building. The average difference in distance between
the starting and the ending points in the 2-D coordinate sys-
tem for real-time dynamic INS/EKF ZVU HDR algorithm is
about 0.45 m over 120 m, which is equivalent to 0.375% error.
To further demonstrate the effectiveness of the proposed
INS/EKF+ZVU+HDR algorithm, we tested it with different
walking speeds: slow (0.58 m/s), normal (1.28 m/s ), and fast
(1.79 m/s). The results are plotted in Fig. 13. The normal speed
trajectory (the green line) shows up as a slightly better t than
the other speed trajectories in the hallway. The errors for ndie: 13:
mal and fast speeds, ranging from 0.45 mto 0.51 m over 120 m,
equivalent to around 0.375% error, are still considered good.

B. Outdoor Localization Tests

For outdoor environments, we tested and compared the pro-
posed algorithm with the others over a larger scale trajectory
along the sidewalks of the UNR campus. The results are plot-
ted in Fig. 14. The average difference in distance between the
starting and the ending points in the 2-D coordinate system
for real-time dynamic INS/EKF+ZVU+HDR is about 3.59 m
over 645 m, equivalent to 0.55% error. The zoom-in area “A’
(see Fig. 14) is the starting/ending point of the testing path on
the UNR campus, whereas point “B” is the area, which shows
walking through the building gate of a UNR building. Large
noise of local magnetic disturbances can be seen around point
“B” (see Fig. 15) because of large steel frames used in the nearby
construction. This caused the trajectories of the INS/ZVU and
INS/ZVU+HDR algorithms to completely turn in the wrong di-Fig. 14.

Two-dimensional trajectories of different speeds.

Two-dimensional trajectories of outdoor testing along the sidewalks

rections, whereas the trajectory of the INS/EKF+ZVU+HDRN the UNR campus.

algorithm remained excellent.



