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Real-Time Human Foot Motion Localization
Algorithm With Dynamic Speed

Luan Van Nguyen and Hung Manh La, Senior Member, IEEE

Abstract—One challenging problem for human–machine sys-
tems is to accurately estimate the position, velocity, and attitude
of human foot motion, using an inertial measurement unit (IMU)
sensor. This is particularly so in large environments affected by lo-
cal magnetic disturbances. In this paper, we propose an algorithm
that not only handles this problem, but also works efficiently in real
time. The novelty of this paper lies mainly in two contributions:
First, we propose a dynamic gait phase detection (GPD) method
that can detect human foot gait phase with high accuracy (2.78%
errors) in dynamic speeds of human foot motion, such as walking
or running; second, we integrate an inertial navigation system, a
GPD, a zero velocity update, and an extended Kalman filter in
real time. The system can, thus, handle the IMU drift problem, as
well as noise, for high-accuracy localization both indoors (0.375%
errors) and outdoors (0.55% errors). To validate the proposed algo-
rithm, we apply the motion-tracking system (MTS-ground truth),
and the results show that 93.7% of the proposed algorithm’s re-
sults converge on the MTS’s results within a distance of less than
7.5 cm. Hence, the proposed algorithm can be embedded in
wearable sensor devices for practical applications.

Index Terms—Extended Kalman filter (EKF), gait phase detec-
tion (GPD), human foot motion localization, inertial navigation
system (INS), real-time localization, zero velocity update (ZVU).

I. INTRODUCTION

INDOOR localization has many potential applications, such
as searching and rescuing in emergencies, guiding visitors

in navigating complex environments, security purposes, etc.
Pedestrian dead-reckoning methods [1]–[3] address the prob-

lem of tracking human foot motion by utilizing step length,
velocity, and orientation. Technologies, including ultrasound,
short-range radio [4]–[7], global positioning system (GPS)
[8], [9], laser range scanner [10], and vision technology [11]
are incorporated for higher accuracy in localization. However,
their deployment is highly expensive, and their maintenance
is complicated.

Human foot localization algorithms hold promise for us-
ing with inertial measurement unit (IMU) sensors [12]–[15],
because the technology is not dependent on installed infras-
tructure; besides, they can be integrated with wearable sensor
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devices. For instance, IMU is used for localization and tracking
of human motion [16]–[18], adopting different approaches for
detection of human foot gait phase. For example, inertial navi-
gation system (INS)+zero velocity update (ZVU) methods and
Bayesian �lter-based sensor fusion [1], [10], [12], [19]–[24] are
used to deal with IMU drift. Additionally, unscented/extended
Kalman �lter (EKF) [13], [15], [25]–[28] and particle �lters [29]
are applied to increase the accuracy of localization. However,
these approaches lead to travel distance errors of up to 10%
[13], [14], particularly in environments with local magnetic dis-
turbances. In addition, current algorithms do not run in real time
and only address certain foot motion speeds; these limitations
can inhibit the algorithms’ practical application. For example,
in our case, we are interested in developing, by applying hu-
man foot localization using an IMU sensor, a smart embedded
wearable device: A smart shoe for building a real-time 3-D map
[30], [31]. This requires attachment of 2-D laser range scanners
and an IMU sensor to the shoe for obtaining highly accurate and
real-time human foot localization. Another importance exam-
ple that requires real-time dynamic foot localization is providing
ef�cient support to monitoring of human health state and gait
malady analysis [32], [33], 3-D human skeleton localization
[34], human–robot interaction [35], etc.

The two main contributions of this paper are the following:
1) development of a dynamic gait phase detection (GPD) algo-
rithm for accurate detection of human foot gait phases (swing
and stance) in dynamic speeds, such as walking and running;
and 2) development of a real-time and accurate foot motion lo-
calization algorithm, which can integrate the GPD with a ZVU,
a heuristic heading reduction (HDR), and an EKF to address
IMU drift and noise in environments affected by local magnetic
disturbances.

The remainder of this paper is organized as follows. Section II
presents an overview of the human foot motion localization
scheme. Section III analyzes human gait motion. Section IV
presents a real-time human foot motion localization algorithm.
Section V applies the motion-tracking system (MTS) to verify
the proposed algorithm’s accuracy. Section VI presents experi-
mental results to demonstrate the effectiveness of the proposed
algorithm, besides comparing it with other existing algorithms.
Finally, Section VII presents the discussion and conclusion.

II. OVERVIEW OF THEHUMAN FOOT MOTION

LOCALIZATION SCHEME

The overview of the human foot motion localization scheme,
with three different modules, is shown in Fig. 1.

The bottom module is an IMU device with three embedded
sensors: an accelerometer for measuring accelerationat +1

b , a
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Fig. 1. INS/EKF ZVU HDR algorithm.

Fig. 2. De�nition of subscripts and superscripts.

gyroscope for measuring angular ratewt +1
b , and a magnetome-

ter for measuring magnetic �eld of the Earthot +1
b . The subscript

b in these formulas refers to the value of these variables in the
body frame of the IMU device; the superscriptt + 1 refers to
the value of these variables at discrete timet + 1 in the IMU’s
time series, as shown in Fig. 2. Certain IMU models available
in the market are integrated with the GPS, but no such integra-
tion is considered necessary to our IMU device, because we are
concerned with only that localization algorithm, which works
in environments that have no GPS support.

Since the IMU normally outputs the data of accelerationat +1
b ,

angular ratewt +1
b , Earth’s magnetic �eldot +1

b , and the quater-
nionqt +1 , we need to derive the Euler rotation angles, i.e., roll
(� t +1), pitch (� t +1), and yaw (� t +1), from these raw data. The
IMU’s quaternion is a vectorqt +1(x, y, z, w), and the conjuga-
tion (qt +1)∗ of qt +1 is a vector, which are obtained as follows:

(qt +1)∗ = (−qt +1(x),−qt +1(y),−qt +1(z), qt +1(w)). (1)

Then, the Euler angles of rotation, i.e.,� t +1 , � t +1 , and� t +1 ,
which rotate along theX -, Y -, Z -axes, respectively, can be
obtained as follows:

⎡
⎢⎣

� t +1

� t +1

� t +1

⎤
⎥⎦ =

⎡
⎢⎣

f 1(qt +1(x))
f 2(qt +1(x))
f 3(qt +1(x))

⎤
⎥⎦ (2)

where

Fig. 3. Human motion gait phase.

f 1(qt +1) = atan2[2(qt +1(x)qt +1(y) + qt +1(z)qt +1(w)),

1 − 2((qt +1(y))2 + (qt +1(z))2)

f 2(qt +1) = arcsin[2(qt +1(x)qt +1(z) − qt +1(w)qt +1(y))

f 3(qt +1) = atan2[2(qt +1(x)qt +1(z) + qt +1(y)qt +1(z)),

1 − 2((qt +1(z))2 + (qt +1(w))2)].

The middle module includes three components: a GPD, a ZVU,
and an HDR. The GPD detects the stance and swing phases
of human foot gait from IMU’s data. Then, the ZVU and the
HDR utilize these data to estimate the error measurement vector
mt +1 , which are the most important input data for the success
of the EKF algorithm. Because the EKF requires kinematically
related measurements of position, velocity, and attitude, it has
to rely on the supports from the GPD, the ZVU, and the HDR.

The top module includes an INS and an EKF. The INS sys-
tem alone cannot cope with the IMU drift. The EKF, with a
properly constructed sensor fusion, can estimate the IMU bi-
ases; therefore, it can help the conventional INS in reducing the
IMU drift. The EKF estimates the errors of actual acceleration,
velocity, and position of human foot motion, by taking the error
measurement vector from the middle module and the feedback
data from the output of the INS (see Fig. 2). On its turn, the INS
receives IMU’s data and the state measurement errors� X t +1

from the EKF to continuously compute, via dead reckoning, the
velocity, attitude, and position of human foot motion.

III. H UMAN GAIT MOTION ANALYSIS

A. Dynamic Human Gait Phase Detection

Obtaining high accuracy in human motion localization, us-
ing IMU sensors, is challenging because it depends greatly on
multiple factors: the drift of the IMU sensors, its position on
the Earth, and the local magnetic disturbances from the external
environment. Fortunately, human foot motion gait comprises
two phases, i.e., stance and swing [36], [37], as shown in Fig. 3,
which can be utilized to estimate IMU drift and the effects of
environment. In the stance phase, the human foot stands on the
ground, and therefore, its actual velocity is zero. Hence, if the
IMU’s velocity of foot in this phase is different from zero, it
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must be the error due to IMU’s drift. Therefore, we can apply
the ZVU algorithm to reduce IMU’s drift and enhance the accu-
racy of localization. Therefore, the accuracy of the stance phase
detection, in real time, is crucial to obtaining higher accuracy of
human foot localization. Furthermore, the accuracy of human
foot motion GPD depends on a person’s physical characteristics
and foot motion speeds. This leads to a very important ques-
tion as to how to detect the stance phase accurately in dynamic
motion speeds.

However, the current algorithms do not run in real time and
only address certain human foot motion speeds. For example, the
algorithm in [14] is limited to normal walking speed and that
in [13] to of�ine GPD, which relies on prede�ned thresholds
of acceleration and angular rate. Hence, these algorithms may
not work for different human characteristics and speeds of foot
motion, in real time.

To solve this problem, we propose an ef�cient method that
automatically computes and updates threshold values through
real-time operation and varying foot motion speeds. Therefore,
the proposed algorithm can effectively detect human foot motion
gait phase in different speeds, such as walking and running.

First, we present the dynamics of sensor datadt +1
g.i at time

t + 1 of i th foot step from the changes in local accelera-
tion (|at +1

local.i − at
local.i|), magnitude of acceleration (|at +1

m.i −
at

m .i |), and angular rate magnitude (|wt +1
m.i − wt

m .i |) as follows:

dt +1
g.i = |at +1

m.i − at
m .i | + |at +1

local.i − at
local.i| + |wt +1

m.i − wt
m .i |

(3)
where the real motion of acceleration in the North East Down
(NED) of the Earth coordinate system [14], [38] can be obtained
as follows:

at +1
m.i = at +1

e.i − ge (4)

wherege is the gravitational acceleration vector

ge = (0.0, 0.0, 9.8 m/s2) (5)

and the acceleration of motion in the NED system can be
obtained as follows:

at +1
e.i = qt +1 .at +1

b.i .(qt +1)∗ (6)

whereat +1
b.i is the acceleration of the IMU in its body frame at

time t + 1 of thei th foot step.
The local accelerationat +1

local.i is obtained as follows:

(at +1
local.i)

2 =
1

2f + 1

t +1∑
j = t−2f

(at +1
b.i − aj

ave.i)
2 . (7)

It is to be noted that (7) is computed in real time. The
main difference, compared with the current of�ine algorithms
[13]–[15], is that this formula requires only data for comput-
ing local acceleration from some immediately preceding steps.
The superscriptj in (7) represents data from time stept + 1,
dating back to the previous time steps2f + 1 (for example,
f = 15 steps).

The average accelerationaj
ave.i in (7) is, thus, computed as

aj
ave.i =

1
2f + 1

j∑
k= j −2f −1

ak
b.i . (8)

Fig. 4. Human gait phases detection at foot stepi − 1.

Then, the dynamic gaindt +1
g.i (at timet + 1 of i th foot step) is

used to compute the values of stance conditionst +1
c.i from some

previous and current values ofdt +1
g.i :

st +1
c.i =

dt +1
g.i + dt

g.i + dt−1
g.i + dt−2

g.i + dt−3
g.i

5
. (9)

It is to be noted that (9) uses �ve previous and current values of
dt +1

g.i , but this can be changed depending on the type of IMU.
If t + 1 is a discretized time during thei th foot step of the

foot motion, then the delay of the stance conditionst +1
d.i of st +1

c.i
is obtained as follows:

st +1
d.i =

st−1
d.i + st +1

c.i

2
(10)

where the initial value ofs0
d.i can be initiated by 0.8, which is

the experimental result of a threshold of normal walking speed.
If maxt +1

cd.i is the max changing speed for the difference
betweenst +1

d.i andst +1
c.i , then we have

maxt +1
cd.i =

{
st +1

c.i , st +1
d.i ≤ st +1

c.i

st +1
d.i , otherwise.

(11)

Let us de�ne sc.(i−1) as an array of all discretized points
st +1

c.(i−1) (the green line in the swing phase of Fig. 4), andsd.(i−1)

as an array of all discretized pointsst +1
d.(i−1) during the swing

phase of the foot stepi − 1 (the red-dashed line in the swing
phase of Fig. 4).

The maximum value of the stance conditionst +1
c.(i−1) , during

the swing phase of thei − 1 foot step,Mc(sc.(i−1)), is, thus,
computed as

Mc(sc.(i−1)) = Max{st +1
c.(i−1) |s

t +1
c.(i−1) ∈ sc.(i−1)}. (12)

In Fig. 4,Mc point is inside the blue circle with theMc label.
Similarly, the maximum value of the delay of the stance con-

dition st +1
d.(i−1) , during the swing phase of thei − 1 foot step,

i.e.,Md(sd.(i−1)), is, thus, obtained as

Md(sd.(i−1)) = Max{st +1
d.(i−1) |s

t +1
d.(i−1) ∈ sd.(i−1)}. (13)

In Fig. 4,Md point is inside the yellow circle with theMd label.
The dynamic threshold thi of the i th foot step is obtained

as follows:

thi = Mc(sc.(i−1)) − Md(sd.(i−1)) (14)
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where the initial value of th0 depends on the IMU sensor, which,
in this case, is 0.8, the experimental threshold of a normal walk-
ing speed. In general, for an arbitrary IMU, the initial threshold
value can be selected from 0.5 to 1. Since thi is a dynamic
threshold, it helps the human foot motion localization algorithm
in adapting to speed changes in foot motion. This threshold is
free from any prede�ned threshold value and depends only on
the speed of motion. It increases when the motion speed in-
creases and vice versa. Hence, it can work with any person’s
gait and different motion speeds like walking or running.

From (14), we can obtain the dynamic human gait detection
gt +1

d as follows:

gt +1
d.i =

{
0, maxt +1

cd.i ≤ thi (stance phase)

6, otherwise (swing phase)
(15)

whengt +1
d.i = 0, the gait is in the stance phase, and whengt +1

d.i =
6, it is in the swing phase.

The summary of the dynamic gate phase (DGP) detection
algorithm is presented in Algorithm 1.

We tested the DGP detection algorithm with different walking
and running speeds in the hallway on the �rst �oor of the Applied
Research Facility building, University of Nevada, Reno (UNR)
campus. The results of this test in detecting the swing and stance
phases are shown in Fig. 5.

The experimental results [see Fig. 5(b)] are collected for dif-
ferent human foot speeds: slow walk (0.85 m/s), normal walk
(1.38 m/s), fast walk (1.92 m/s), and slow run (5.7 m/s). The
peaks of max changing speed [blue line in Fig. 5(a)] clearly
change, following the speed change. The dynamic threshold
values [green line in Fig. 5(a)] are updated and adapted after
each gait circle of this test. As a result, the DGP algorithm can
detect the human foot gait phases [red line in Fig. 5(a)] correctly.
The average error, detected from over 50 different DGP tests, is
1 in 36 steps, which is equivalent to 2.78%.

B. Zero Velocity Update Algorithm

As mentioned in Section III-B, whenever the GPD algorithm
detects the stance phase of human foot motion gait, the ZVU
algorithm [12], [13], [15] can measure the bias velocity, which
helps in �xing the error due to IMU’s drift. Hence, the ZVU
algorithm is important in enhancing the accuracy of the human
foot localization by using IMUs. Without loss of generality, we
can assume that each gait of human foot motion occurs over a
duration of[Ti − �T i , Ti ], whereTi is the discrete time at the
end of the stance phase of thei th foot step, as shown in Fig. 2.
The bias errorat +1

be of acceleration at timet + 1 = Ti of foot
motion in the stance phase can be obtained as follows:

at +1
mbe =

vt +1=Ti
m

�T i
. (16)

Then, from (16), the bias error of acceleration in the NED system
can, thus, be obtained as

at +1
ebe = at +1

mbe + ge. (17)

We can now compute the bias error of acceleration in the IMU
body frame as

at +1
bbe = (qt +1)∗.at +1

ebe .qt +1 . (18)





NGUYEN AND LA: REAL-TIME HUMAN FOOT MOTION LOCALIZATION ALGORITHM WITH DYNAMIC SPEED 829

validation, it is important to calibrate them in the same coordi-
nate system. The easiest way to do this is to transform the data of
both MTS and the algorithm into the NED system. To transform
MTS’s data into the NED system, we mounted a 3DM-GX3-25
IMU on an L calibration frame (see (1) in Fig. 7), a tool for
calibrating and building the coordinate system of the MTS. This
makes the coordinate system of IMU and the L frame equiva-
lent. Therefore, the Euler angles{roll (� ), pitch (� ), and yaw

Fig. 8. Tracking of shoe’s movement around the ARA lab by MTS.

Fig. 9. Plotting the trajectories of both MTS and the proposed algorithm.

(� )} of both the IMU and the MTS are also equivalent. Hence,
the rotation matrixRt +1

M , which converts the MTS’s data from
the MTS body system into the MTS’s NED system, is obtained
by the same formula asM 1|0

NED in (39)

Rt +1
M = M

1|0
NED. (53)

We name the position collected from the MTS for a marker
m at timet + 1 on the shoe in the MTS’s body frame aspt +1

m
= (xt +1

m , yt +1
m , zt +1

m ). The transformed positionpt +1
m NED of this

marker in the MTS’s NED system is obtained as

pt +1
m NED = Rt +1

M pt +1
m . (54)

The IMU’s moving pointpt +1|t +1 in the proposed algorithm
at timet + 1 is obtained as in (50). Because the markers and
IMU are mounted on the same shoe, the starting points of
the markerm and IMU in the proposed algorithm at starting
timet + 1 = 0 are equivalent,p0

m NED = p0|0 . Otherwise,p0|0 is
the original point in the IMU’s NED system. Hence, it is neces-
sary to transform the original position of the IMU’s NED system
into the MTS’s NED system as follows:

pt +1
m NED.IMU = pt +1|t +1 + p0

m NED. (55)

After transforming the data of both the MTS and the IMU algo-
rithm into the same coordinate system by (54) and (55), we plot
them on the same �gure (see Fig. 9) to compare their accuracy.

In Fig. 9, the dashed-dotted line and solid line present the tra-
jectories tracked by the MTS and the proposed IMU algorithm,
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Fig. 10. Error between MTS and the proposed algorithm trajectories along
x- andy-axes.

respectively. The exact difference between these trajectories de-
notes the error of the proposed algorithm. In this validation,
the difference distance is 45 mm, whereas the traveling dis-
tance around the ARA lab is 13.4 m. Therefore, the average
error in the total traveling distance is approximately 0.335%. To
further demonstrate the validity of the proposed algorithm, we
plotted the trajectory error between the MTS and the proposed
algorithm alongx- andy-axes (see Fig. 10) and found that the
maximum error is small, around 280 mm.

B. Empirical Demonstration of Convergence

To demonstrate the convergence of the proposed algorithm
in the MTS, we use the probability density of the difference
between them. The difference function is obtained as follows:

diff(pt +1
m NED, pt +1

m NED.IMU) = (pt +1
m NED − pt +1

m NED.IMU). (56)

The probability density of the differences is computed by

probMTS.IMU =
f(diff(pt +1

m NED, pt +1
m NED.IMU))

n
(57)

where f is the frequency function, andn is the num-
ber of points on the MTS’s trajectory,{pt +1

m NED}, and t + 1
∈ {1, 2, ..., n}. Because the responding rates of the MTS
and the IMU are different, and the MTS is considered as
the ground truth for this validation, the number of total elements
n in (57) is exactly the same as the number of total elements in
the MTS’s dataset{pt +1

m NED}. The results of the probability den-
sity, plotted in Fig. 11, prove the convergence of the proposed
algorithm with the MTS’s results (93.7% of the proposed algo-
rithm’s results are convergent with MTS’s results in the small
error range of less than 7.5 cm).

VI. EXPERIMENTAL RESULTS

In this section, we implement the proposed algorithm
(INS/EKF+ZVU+HDR) and compare it with two other algo-
rithms: the INS/ZVU and the INS/ZVU+HDR. For this, we
mount a MicroStrain 3DM-GX3-25 IMU sensor on the shoe for
testing them (see (3) in Fig. 7). The speci�cations of this IMU

Fig. 11. Convergence of the proposed algorithm is over 93% for an error range
of 7.5 cm around MTS’s results.

TABLE I
MICROSTRAIN 3DM-GX3-25 IMU’S GENERAL INFORMATION

Speci�cations Values

Data output rate up to 1000 Hz
Baud rate 115 200 to 921 600 bps
Power consumption 80 mA @ 5 V with USB

TABLE II
MICROSTRAIN 3DM-GX3-25 IMU’S SPECIFICATIONS

Speci�cations Accels Gyros Mags

Measure range ±5 g ±300◦/s ±2.5G
Nonlinearity ±0.1% fs ±0.03% fs ±0.4% fs
Bias stability ±0.04 mg 18◦/h
Initial bias ±0.002 g ±0.25◦/s ±0.003 G
Factor stability ±0.05% ±0.05% ±0.1%
Noise density 80µg/

√
Hz 0.03◦/s/

√
Hz 100µG/

√
Hz

Alignment error ±0.05◦ ±0.05◦ ±0.05◦

Sampling rate 30 kHz 30 kHz 7.5 kHz

are presented in Tables I and II. We implement the algorithms
in the C++ language and run them on the Hydro Robotic
Operating System platform. The real-time stream data from this
3DM-GX3-25 IMU sensor is processed by the proposed algo-
rithm. We initialized the process noise covariance matrixQ0 =
diag(10−4 , 10−4 , 10−4 , 0, 0, 0, 0, 0, 0, 10−4 , 10−4 , 10−4 , 0, 0, 0).
The measurement noise covariance matrixR0 and the estimated
error covariance matrixP 0|0 are initialized by (42) and (43),
respectively.

A. Indoor Localization Tests

We tested the algorithms with different walking speeds in
the hallway on the third �oor of the Scrugham Engineering and
Mines (SEM) building at the UNR campus.

Fig. 12 shows the results of comparison among
the three algorithms: INS/ZVU, INS/ZVU+HDR, and
INS/EKF+ZVU+HDR. It can be seen that the INS/EKF+ZVU
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Fig. 12. Two-dimensional trajectories plotted on the hallway of the third �oor,
SEM building, UNR campus.

+HDR algorithm outperforms the other two, because its
walking trajectory closely matches with the hallway of the
SEM building. The average difference in distance between
the starting and the ending points in the 2-D coordinate sys-
tem for real-time dynamic INS/EKF ZVU HDR algorithm is
about 0.45 m over 120 m, which is equivalent to 0.375% error.

To further demonstrate the effectiveness of the proposed
INS/EKF+ZVU+HDR algorithm, we tested it with different
walking speeds: slow (0.58 m/s), normal (1.28 m/s ), and fast
(1.79 m/s). The results are plotted in Fig. 13. The normal speed
trajectory (the green line) shows up as a slightly better �t than
the other speed trajectories in the hallway. The errors for nor-
mal and fast speeds, ranging from 0.45 m to 0.51 m over 120 m,
equivalent to around 0.375% error, are still considered good.

B. Outdoor Localization Tests

For outdoor environments, we tested and compared the pro-
posed algorithm with the others over a larger scale trajectory
along the sidewalks of the UNR campus. The results are plot-
ted in Fig. 14. The average difference in distance between the
starting and the ending points in the 2-D coordinate system
for real-time dynamic INS/EKF+ZVU+HDR is about 3.59 m
over 645 m, equivalent to 0.55% error. The zoom-in area “A”
(see Fig. 14) is the starting/ending point of the testing path on
the UNR campus, whereas point “B” is the area, which shows
walking through the building gate of a UNR building. Large
noise of local magnetic disturbances can be seen around point
“B” (see Fig. 15) because of large steel frames used in the nearby
construction. This caused the trajectories of the INS/ZVU and
INS/ZVU+HDR algorithms to completely turn in the wrong di-
rections, whereas the trajectory of the INS/EKF+ZVU+HDR
algorithm remained excellent.

Fig. 13. Two-dimensional trajectories of different speeds.

Fig. 14. Two-dimensional trajectories of outdoor testing along the sidewalks
on the UNR campus.


