2021 Fifth IEEE International Conference on Robotic Computing (IRC) | 978-1-6654-3416-4/21/$31.00 ©2021 IEEE | DOI: 10.1109/IRC52146.2021.00026

2021 Fifth IEEE International Conference on Robotic Computing (IRC)

Single Frame Lidar and Stereo Camera Calibration Using
Registration of 3D Planes

Ashutosh Singandhupe, Hung Manh La IEEE Senior Member

Abstract—This work focuses on finding the extrinsic parameters
(rotation and translation) between the lidar and the stereo camera
setups. We use a planar checkerboard and place it inside the
Field-of-View (FOV) of both the sensors, where we extract the 3D
plane information of the checkerboard acquired from the sensor’s
data. The planes extracted from the sensor’s data are used as
reference data sets to find the relative transformation between the
two sensors. We use our proposed method Correntropy Similarity
Matrix Iterative Closest Point (CoSM-ICP) algorithm to estimate
the relative transformation. In this work, we use a single frame
of the point cloud data acquired from the lidar sensor and a
single frame from the calibrated Stereo camera point cloud to
perform this operation. We evaluate our approach on a simulated
dataset since it has the freedom to evaluate under multiple
configurations. Through results, we verify our approach under
various configurations.

I. INTRODUCTION

Primitive approaches for an autonomous multi-sensor system
involve a predefined setup where the sensors are placed at
known locations relative to each other. This setup does not
necessarily involve any calibration methodology since the sen-
sors’ relative translation and rotation components are known.
However, with the advent of unique designs of autonomous
systems in the market and the research community, it has be-
come essential for automatic and efficient calibration methods
for multi-sensor setups. Calibration in a multi-sensor system
is essentially finding the relative transformation between the
sensors. With our focus on autonomous navigation, lidar
and stereo camera configurations are explicitly designed to
the requirement of the autonomous system. These sensors,
however, need to be calibrated (finding the relative rotation and
translation between the two sensors) for efficient autonomous
navigation [8], [11], [13]-[15].

Early methods that involve extrinsic calibration between a lidar
and a camera (or a stereo camera) made use of a calibration
card or some well-defined calibration objects [2], [3], [6],
[8], [16]. A planar checkerboard is one of the most widely
used calibration objects since it can easily extract features
from both the lidar and the camera data. Most of these
approaches have highlighted the importance of placing the
calibration objects in the Field-of-View (FOV) of both the
sensors. Finding the correspondences between the lidar and
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the stereo data points is crucial for efficient lidar and stereo
camera calibration. The correspondences are calculated either
manually or automatically using feature extraction algorithms.
The accurate estimation of the correspondences is essential for
efficient calibration.

In this work, we propose an easy and efficient process to per-
form the lidar-stereo camera calibration using a checkerboard
calibration target. Our work is similar to the work proposed
by [5], where we compute the plane coefficients using the data
from both the lidar and the stereo camera 3D point data. Later
on, these coefficients are used to construct a well-structured
set of 3D points residing in that plane. Our work differs from
the above mentioned works, where we use our own proposed
Correntropy Similarity Matrix (CoSM ICP) approach [12] for
aligning the points in the plane and compute the relative
transformation between the sensors. In essence, the significant
contributions of our work are outlined as follows:

e  We develop our algorithm based on finding planes
acquired from both the lidar and the stereo camera’s
data.

e  We compute the plane coefficients separately from
both the sensor’s data.

e From the plane coefficients acquired from both the
sensors, we determine the plane’s location and popu-
late the plane with structured data points.

e  Our proposed algorithm only needs to populate a lim-
ited number of points for the plane to plane matching.

e  We use our CoSM ICP approach to find the relative
transformation between the points present in the plane.

The remaining paper is organized as follows: Section II
describes our implementation of the proposed methodology.
The results and evaluation of our proposed methodology are
discussed in Section III, and the conclusions are given in
Section V.

II.  PROPOSED METHODOLOGY
In this section, we describe the steps involved in our lidar-
stereo calibration. We perform different steps corresponding
to the data acquired from the 3D lidar sensor and the stereo
camera data. The overall procedure involved in our work is
shown in Fig. 1. In this work, use only a single frame of
the lidar’s 3D data and the stereo camera’s 3D data, which
contains the 3D points of the calibration target. For the 3D
lidar sensor, we manually select the region containing the 3D
points corresponding to the calibration target (checkerboard).
We do the same for the stereo camera data, and we assume that
the camera is calibrated, and we know the intrinsic parameters
of the cameras. It was convenient for us to use the same
calibration target for camera calibration as well. Again, the key
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Fig. 1: Flowchart of our approach.

point is to determine the plane coefficients acquired from both
the lidar’s 3D data and the stereo camera’s computed 3D data.
Fig. 1, as read from left to right, initially shows the simulated
scene setup that includes a lidar and a stereo camera separated
by a certain transformation. The left camera center defines the
stereo camera’s frame of reference. We directly show the 3D
computed points from the stereo sensor setup for simplicity
(3D points are computed using the well-known Semi-Global
Block Matching (SGBM) [4] of the image pairs). We manually
select the region, which contains the points corresponding to
the calibration target from both the lidar 3D point clouds and
the stereo computed 3D point cloud. We compute the plane
coefficients for each of these selected regions using Random
Sample Consensus (RANSAC). We construct a well-structured
set of points from the computed plane coefficients (from the
lidar and the stereo sensor data). We use our CoSM ICP
approach to compute the transformation between these point
sets. The transformation computed by the CoSM ICP returns
the relative transformation between the lidar and the stereo
Sensors.

A. Lidar data processing

Using a single calibration target is relatively easy and intu-
itive for an extrinsic calibration between multiple sensors. As
mentioned earlier, the first step for our process is to capture
the 3D points from the lidar sensor and the 3D points from
the stereo camera that contain the calibration target. From the
3D data, we manually pick the region containing the points
corresponding to the calibration target and ignore the rest. This
selected data contains points of the calibration target, which is
effectively a plane. Other automatic approaches, like distance
filtering [10], can be used for this process, but we let the user
pick the region for complete control. Now, from this ’selected’
point set, we intend to get the corresponding plane coefficients.
RANSAC is our choice for this process, which determines the
best-fit plane of 3D points using inliers. We use the following
steps for our work.

e Randomly selects 3 points from the ‘selected’ points.

e  Compute the plane equation using these 3 points.
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Compute inliers using the computed plane with all
other 3D points.

e  Repeat the process with the highest inlier ratio.

For this setup, we set the maximum iterations for our RANSAC
algorithm as 1000. 3D points that are within 10mm from the
plane are considered inliers. The inlier ratio, which crosses
90% or more, is considered as a best-fit plane. The plane
equation computed from the lidar points is given as a;x+b;y+
¢z +d; =0, where a;, b, ¢; and d; represent the coefficients
of the plane.

B. Stereo camera data processing

This section details the process of computing the 3D plane
equations of the calibration target using the point clouds
generated from the stereo camera setup. In this work, we
assume that the camera is already calibrated, and we know
its intrinsic parameters. For our experiments, we perform the
calibration steps that are implemented in Robot Operating
System (ROS). For camera calibration, we use the same
checkerboard calibration target that we have used to perform
the lidar-camera calibration as mentioned in this work. To
compute the point clouds from a pair of stereo images, we use
the popular Semi-Global Block Matching (SBGM) algorithm
[4] to generate the depth map from the stereo image pairs.
Based on the quality of the images (resolution, frame rate),
we can tune multiple parameters of the SGBM algorithm
(block size, speckleRange, speckleWIndowSize, etc.) to get
the desired quality of the depth map for the further point
cloud generation. In our framework we use the well known
StereoSGBM() function provided by OpenCV [1]. The reader
is suggested to refer to [4] and [1] to explore further options
in point cloud generation from stereo images. We manually
select the 3D points computed from the stereo camera and
compute the plane equation corresponding to the 3D points
using RANSAC. We follow the same steps as mentioned in
the lidar data plane computation:

e Randomly selects 3 points from the 3D point clouds

computed from the stereo data.

e Compute the plane equation using these 3 points.
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e  Compute inliers using the computed plane with all
other 3D points.
e  Repeat the process with the highest inlier ratio.

The plane equation computed from the camera points is given
as asx+bsy+csz+ds = 0, where ag, bs, cs and d represent
the coefficients of the plane.

C. Transformation estimation

We compute the transformation between these sensors from
the plane equations calculated from both the lidar and the
stereo camera data. For this step, we use the computed plane
equations to populate the planes with a fixed number of points
separated by a known distance (e.g., 100 points). The point
sets generated from this process can be ’aligned’. The resultant
transformation gives us the transformation between the lidar
and the camera sensor. The primary reason for this process
is that the number of points in the lidar point set is different
from the number of points in the computed 3D points from the
stereo camera. Our CoSM ICP needs to have an equal number
of points for alignment.

III. RESULTS

We perform our initial evaluation in a simulated environment
provided by Open Robotics [9]. To demonstrate our results,
we start with a basic simulated dataset containing simulated
lidar data and a simulated stereo camera setup (mounted
on a simulated Prius model car) established in a simulated
environment in Gazebo, which is shown in Fig.2 (a) and (b)
[7]. The primary reason for selecting this simulation setup is
that we can compare our results since we know the ground
truth, and this setup contains other complexities in the envi-
ronment like buildings and cars (beyond the calibration card).
Our experiments test the results with a linear transformation
ranging from 0.05m to 2.5m (with z,y, z axes). We set up a
simple test case of lidar-stereo setup where the stereo camera
faces the calibration target and is placed near the lidar sensor
under various configurations (e.g., 5cm along the y axis of
the lidar sensor or t = [0,0.05,0.0]). We intend to calculate
the transformation between the stereo’s left camera (C.) with
respect to the lidar’s frame L.. The stereo camera has a
baseline of 7cm between the left and the right cameras. Both
the cameras have the resolution of 1280 x 720, and since we use
a simulated setup, we ignore the radial and tangential distortion
(both were set to 0). In this scenario, we can evaluate our
approach on multiple configurations where the ground truth is
already known, as it can be seen in Fig. 2. So, in this case,
our problem statement is defined as finding the transformation
between the lidar (L,) and the stereo camera (.5;) setup using
our proposed methodology. This setup provides a base test case
to verify our algorithm. Thus it can be extended to complex
real-time test cases.

A. Evaluation on Simulated data

The various configurations under which we performed our
experiments are shown in Table I. It shows the original ground
truth transformations between the lidar and the stereo sensor.
We place the calibration target at an average distance of 2m to
3m from the calibration target throughout our experiments (this
distance is with respect to the lidar coordinate frame (L.)).

After performing the steps mentioned in our approach, we
collect the computed transformations returned by our ap-
proach. Table II shows the individual estimated transformation
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TABLE I: Configuration setups used in our experiments (or
Ground Truth).

[ Setting [ #,(m) [ t,(m) | t-(m) ] roll (rad) [ pitch (rad) [ yaw (rad) |

1 0 0.4 0.0 0.0 0.0 0.0

2 0 0.1 0.0 0.0 0.0 0.0

3 0 0.05 0.0 0.0 0.0 0.0

4 0 0.6 0.0 0.0 0.0 0.0

5 0 1.2 0.0 0.0 0.0 0.0

6 0 2.2 0.0 0.0 0.0 0.0

7 0.5 0.5 0.0 0.0 0.0 0.0

8 —0.5 1.5 0.3 0.0 0.0 0.0

9 —0.5 0.5 0 0.0 0.0 —0.0
10 0.5 0.5 0 0 0 —0.523599
11 0.5 0.5 0.3 0 0.349066 | —0.523599
12 0.3 0.6 0.4 0 0.349066 | —0.523599
13 0.2 0.3 0.2 0.261799 0 —0.523599
14 0.7 0.2 0.9 0 0.349066 0

computed using our method. The reason for separating the
components is to evaluate each component separately.

TABLE II: Individually computed transformation based on our
approach.

[ Setting | ¢,(m) | t,(m) | t.(m) [ roll (rad) | pitch (rad) | yaw (rad) |
1 0.019 0.342 —0.074 | —0.108 —0.032 —0.0090
2 —0.044 | —0.091 | 0.031 —0.0280 0.01700 0.0089
3 0.004 0.046 0.009 —0.0129 0.0069 0.00999
4 0.004 | —0.655 | 0.082 0.046 0.0430 0.0100
5 —0.015 | —1.147 | 0.036 —0.016 0.0039 0.0109
6 0.025 | —2.165 | 0.013 0.0169 0.014 0.0099
7 —0.504 | —0.468 | 0.004 —0.0360 0.0040 0.0059
8 0.541 —0.494 | 0.091 0.033 0.039 0.0090
9 —0.476 | 0.549 0.401 —0.093 —0.0049 | —0.001993
10 0.488 0.545 0.045 —0.532 0.009 —0.00099
11 0.445 0.567 0.267 —0.5341 0.2085 —0.166
12 0.345 0.571 0.431 —0.2740 0.1023 —0.0663
13 0.163 0.291 0.201 —0.174 0.0209 —0.166
14 0.661 0.242 1.03 —0.331 0.0989 —0.123

For further evaluation, we show the average error in multiple
configurations as done in the experiments. Fig.3 shows the
average error of the individual components of the rotation
and translation components under various configurations. From
the data as given in Table II, we can see that under simple
translation along x, vy, z axes (no angular transformation), our
algorithm performs well (with individual RMSE’s ~ 0.01
along with all the individual components). Even under small
rotations, our approach returns relatively close values (RMSE
~ 0.05) compared to the ground truth. One can see from Table
II that if we have large rotations along the x, y and z axes ( 30
degrees in settings 10-13), the computed transformations are
quite far from the ground truth.

IV. CONCLUSIONS
This work proposes a novel algorithm for an efficient lidar-
stereo calibration using a single frame of lidar data and the
stereo camera data (3D points estimated from the stereo cam-
era). In this work, we propose estimating the plane coefficients
from both the lidar and the stereo camera data. From the
computed plane coefficients (from both the sensor’s data),
we construct a well-spaced 3D point structure. Later, we
propose to use our methodology called CoSM ICP to compute
the transformation between the ‘structured’ points, thereby
accomplishing the purpose of lidar-stereo calibration. CoSM
ICP maintains one-to-one relationship between each point in
the Source dataset and the Target dataset. CoSM ICP is also
robust to large rotations and translations, which makes it a right
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Fig. 3: Translation and rotation errors of individual compo-
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tions.

choice for this approach to be implemented in this work. One
of the primary challenges we still face is the efficient detection
of plane coefficients from the 3D points of the stereo data. We
still face failure in estimation if we have inadequate data from
the stereo point cloud. Our future work is focused on using
other algorithms for accurate 3D point estimation from the
stereo sensor. On the other hand, we also focus on computing
the 3D plane equations using a calibrated monocular camera.
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