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Abstract

Autonomous navigation of steel bridge inspection robots is essential for proper main-

tenance. Majority of existing robotic solutions for steel bridge inspection require

human intervention to assist in the control and navigation. In this thesis, a control

and navigation framework has been proposed for the steel bridge inspection robot de-

veloped by the Advanced Robotics and Automation (ARA) to facilitate autonomous

real-time navigation and minimize human intervention. The ARA robot is designed

to work in two modes: mobile and inch-worm. The robot uses mobile mode when

moving on a plane surface and inch-worm mode when jumping from one surface to

the other. To allow the ARA robot to switch between mobile and inch-worm modes,

a switching controller is developed with 3D point cloud data based. The surface

detection algorithm is proposed to allow the robot to check the availability of steel

surfaces (plane, area and height) to determine the transformation from mobile mode

to inch-worm one. To have the robot to safely navigate and visit all steel members of

the bridge, four algorithms are developed to process the data from a depth camera,

segment it into clusters, estimate the boundaries, construct a graph representing the

structure, generate the shortest inspection path with any starting and ending points,

and determine available robot configuration for path planning. Experiments on steel

bridge structures setup highlight the effective performance of the algorithms, and the

potential to apply to the ARA robot to run on real bridge structures.
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Chapter 1

Introduction

Within the field of health monitoring of bridge structures [2–5], the development

of novel robotic platforms has received considerable attention in the recent years

[6–8, 8–15]. It has been increasingly stressed in the literature that timely and reg-

ular monitoring of steel bridges ensures the safety of transportation vehicles. En-

vironmental degradation (e.g., rain, wind, solar radiation), continuous surface-level

friction, overloading, and other factors lead to deterioration of different structures on

steel bridges. Continuous steel bridge monitoring is necessary to ensure transporta-

tion safety and proper maintenance. The tasks can be done manually, however, it

is time-consuming, labor intensive, dangerous, affect to the traffic, and sometimes

inaccessible for human in complex structures. For the reasons, there are varieties

of robotic platforms [1, 16–19] developed to support human to do the task. These

robots are magnetic-based that help them traverse on multiple angles of steel bridge

structures. Most of the robots are controlled manually by an operator.

As an effort to go further in the field, the Advanced Robotics and Automation

(ARA) Lab of the University of Nevada, Reno has developed a bio-inspired hybrid
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robot - ARA robot [1, 20] (Fig. 1.1) with the aim to inspect a steel bridge structure

autonomously. The robot is able to work in two modes: (1) mobile to traverse on

smooth steel surface, and (2) inchworm - to change/jump to another steel bar surface.

In this thesis, a control and navigation framework is proposed for the ARA Lab’s robot

to move easily and autonomously on smooth steel surfaces, and jump to another steel

surfaces, which are adjacent or higher than the current one.

(a) (b) (c)

Figure 1.1: ARA robot model [1] in (a) mobile, (b) inch-worm modes, and (c) real
robot

To move on smooth steel surfaces, the robot needs to navigate itself on varieties

of structures in steel bridge as shown in Fig. 1.2, which consists of popular structures

as Cross-, T-, I-, K- and L- shape. The structure’s complexity and varied dimensions

make motion planning task is very challenging, requires the robot’s perception about

the structure and a method that is able to make use of limited work space. Moreover,

to navigate the robot to inspect a bridge continuously, the navigation system needs

to build a path in large scale. Combining with a depth sensor to collect data in a far

distance, a method is developed to build and represent a steel bridge structure as a

graph. Moreover, we propose a variant of open Chinese Postman Problem (VOCPP),

which determines the shortest path to inspect all available steel bars on the structure

with difference of starting and ending points.
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(a) (b)

(c) (d)

Figure 1.2: The typical steel bridges structure: (a) cross shape, (b) K-Shape, (c)
L-Shape, (d) and combination of shapes

1.1 Literature Review

Most of steel bridges are monitored by civil inspectors manually [21]. However, due

to the complex structural composition and inaccessible regions of the bridges (e.g.,

pipes, poles, overhead cables), the manual inspection of these regions is a perilous

task for human inspectors. Additionally, manual inspection is time-consuming, labor-

intensive, and disruptive to traffic. It is for this reason that different robotic solutions

have been developed for automated steel bridge inspection [17, 22–29]. These robots

are equipped with different adhesion mechanism (e.g., magnetic wheels, pneumatic,

suction cups, bio-inspired grippers), visual sensors (e.g., monocular, stereo vision,

RGB-D sensors) and other sensory modalities to facilitate navigation and inspection

(e.g., IMUs, eddy current sensors) [17,22,24–28]. Adhesion force generated by either

permanent or electro magnets attached on the robot enables them [29] to adhere and
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navigate flexibly on smooth steel surfaces. The incorporation of legged mechanism

with electromagnets allows robots to assist in locomotion and traversal through com-

plex steel structures [30]. These robots are designed for a particular environment,

lacking the deploy-ability in many unstructured environments. A flexible and versa-

tile climbing robot was designed in [21], which was equipped with 5-DOF arm, eddy

current sensor and RGB-D sensors for inspection of steel bridge surfaces, especially

for inaccessible regions of the bridges. Another type of climbing robot was developed

by [31] with untouched magnet blocks to move efficiently on metal surfaces. Although

these robots alleviated the difficulty of moving on complex steel surfaces, they were

controlled manually by cables or remote instruction from human operators.

There is a number of work related to the navigation of inspection robots for

steel bridges [32–34], which helps the robots move in a local area, and assume the

robot dimension quite small comparing to the workspace. In [32] particularly for

autonomous steel bridge inspection robot, the authors proposed a task-level primitive

and online navigation combining with IR sensor, which helps the robot move in local

area. In [33], the authors proposed a method to detect edges on a large surface, which

is used in navigation. The method in [34] supported the small size robot to move in a

large-inside steel bridge space. Their navigation work here assumed that the robot’s

dimensions are quite small comparing to the workspace. With the limit of steel bar

dimension, our research needs to handle a new circumstance for robot navigation and

motion planning.

There is an important feature in navigation for steel bridge inspection robots:

the dimensions of steel bars are limited, and the robots have small space to make a

motion. The methods in [35–37] are able to build very nice convex regions, which

make the construction of configuration space easy. The approximation methods,

however, reduce the dimension of the workspace, and could make the robot motion
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infeasible. To overcome these problems, in this paper we propose a method, which

segments the workspace into multiple clusters and represents it by a set of boundary

points. The method can use all the possible area in the workspace, thus increases the

probability of finding a path for the robot. With the irregular shape of the steel bar,

Expectation Maximization - Gaussian Mixture Model (EM-GMM) method [38–41] is

utilized to segment the data into irregular dimensional clusters.

When perceiving the working space, the navigation system represents the bridge

structure as a graph. Estimation of features from point cloud data receives a sig-

nificant attention from researchers [42–44]. These researches worked on a particular

small object to the view space of the depth sensors. In our research, the bridge is large

and usually over than the sensor view. A graph construction algorithm is developed

for this purpose. From the built graph, the next step is to determine a shortest path

to inspect all steel bars in the structure, that is called inspection route or Chinese

Postman Problem (CPP). There are several requirements for the shortest path in our

context. The real bridge is too long for the depth sensor to collect data in one frame,

thus the bridge is separated into multiple parts. As the robot finishes inspection in

one part, it will move the next one to continue the task. Therefore, the robot starts at

one point and ends in another point. The starting and ending points can be anywhere

on the bridge structure, which are convenient for the robot to perform the next task.

There is a number of research working on CPP problem [45–47], however, there is no

work satisfying our requirement of arbitrary starting and ending locations. Therefore,

we propose a variant of open CPP (VOCPP) algorithm to handle the problem.



6

1.2 Contributions

Steel bridge inspection is a continuous process, the primary goal of our research is to

develop a fully autonomous robotic system to automate this task. In this research,

we proposed a control and navigation framework for the ARA robot to navigate

autonomously on steel bridge structures. The contributions of this thesis are then as

follows:

• A control framework to help the ARA robot switch between two operation

modes (mobile, inch-worm) autonomously. The switching control determines

the availability of the planar surface, its area and height to decide the next

transition;

• A non-convex boundary estimation algorithm to find the boundary of the steel

bar point cloud, that utilizes the availability of limited steel bar surface.;

• An area estimation algorithm using point cloud data from RGB-D sensor to

allow the robot to assess area availability for transitioning from one plane to

another. This algorithm determines if the available area is sufficient for the

robot’s foot transition;

• An efficient algorithm to segment the steel bridge structure into steel bars and

cross area regardless any kinds of input structure (tested on T-, K-, I-, L- and

Cross- shape);

• An algorithm to construct an undirected graph from the steel bridge structure

data;

• VOCPP algorithm to find the shortest path for the robot to inspect all steel

bars in the graph with difference between the starting and ending points;
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• A method to determine whether a robot configuration belongs to free configu-

ration, with the input as a set of cluster boundary of steel bridge structure.

1.3 Thesis Organization

The organization of the remainder of this thesis is as follows. Chapter 2 provides

fundamental background including Point Cloud processing, motion planning, robot

control, and Chinese Postman Problem. Chapter 3 introduces the control framework

of the ARA robot. Chapter 4 introduces the navigation of the ARA robot in mo-

bile transformation. Chapter 5 presents the experiment setup and results. Lastly,

Chapter 6 covers the conclusions with analysis and potential future development.



8

Chapter 2

Background

This chapter provides the background knowledge, which is used in this thesis such

as Expectation Maximization - Gaussian Mixture Model, Chinese Postman Problem,

and Rapidly Exploring Random Tree Path Planning.

2.1 Gaussian Mixture Model

Gaussian Mixture Model - GMM [48] is a probabilistic model with an assumption that

the data is generated by a group of Gaussian distributions with unknown parameters.

Assuming there are n observations X1, X2, ..., Xn, and each Xi is drawn from one

of K mixture components. Going with each random variable Xi, there is a label

Zi ∈ {1, ..., K}, which shows the component Xi came from.

From probability law, the marginal probability of Xi is:

P (Xi = x) =
K∑
k=1

P (Xi = x|Zi = k)P (Zi = k) =
K∑
k=1

P (Xi = x|Zi = k)πk (2.1)
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where, πk is called mixture proportions, and it represents the probability that Xi

belongs to the k− th mixture component. The sum of the mixture proportions is one:∑K
k=1 πk = 1.

2.2 Expectation Maximization GMM

Expectation Maximization (EM) algorithm is an iterative method [49], which deter-

mines the best value for a process latent variable in the presence of of latent variables.

There are two modes in the EM algorithm: estimating step and maximizing step.

• Estimating step so-called E-step attempts to estimate the value of the missing

or latent variables.

γj(xn) =
πjP (xn|µj,

∑
j)∑

k πkP (xn|µk,
∑

k)
(2.2)

• From the estimation, the maximizing step or M-step optimizes the model pa-

rameters to explain the data.

µj =

∑N
n=1 γj(xn)xn∑N
n=1 γj(xn)

(2.3)

∑
j

=

∑N
n=1 γj(xn)(xn − µj)(xn − µj)

T∑N
n=1 γj(xn)

(2.4)

πj =
1

N

N∑
n=1

γj(xn) (2.5)

where, γj is the weight to component j of variable xn, µj are the means,
∑

j are

covariances, and πj are the mixing probabilities.

For GMM, the model’s parameters such as the variances and means are unknown,

thus EM algorithm is a good tool to find the parameter values. In our case, the number
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of steel bars and cross area are unknown, and need to be determined. Running the

EM-GMM algorithm iteratively until it provides a stable result.

2.3 Rapidly Exploration Random Tree

Rapidly Exploration Random Tree (RRT) [50–52] is a path planning algorithm, which

works efficiently on nonconvex, high dimensional space. The idea is to build a tree

that expands incrementally by random samples from the search space. As each new

sample is drawn, it is attempted to connect to the nearest neighbor state in the tree.

If the connection is feasible, the sample is added to the tree, and the tree gets new

state. The length of the connection is limited to assure all the points between them

belonging to the search space. The random sample is a tool to control the direction

of the tree expanding, and the length limit regulates its rates. The computation time

depends on the number of samples and length limit.

RRT growth’s direction can be adjusted by adding the probability of sampling

states from a particular area. It will speed up the searching and guide the tree to the

planning problem goal. However, RRT does not usually bring an optimal solution,

and the path is not smooth.

2.4 Chinese Postman Problems

Chinese Postman Problem (CPP), also known as Route Inspection problem [53], is

a problem of graph theory that determines the shortest delivery path for a mailman

with two criteria: (1) the mailman starts and ends at the same point, and (2) he needs

to traverse all the streets at least one. If all corners in the graph are even degree, an

ideal solution will exist, and all the street/edges are traversed only one.
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If the starting point and ending points are different, the problem is called Open

Chinese Postman Problem. If only the starting and ending points are odd degree,

then it exists an ideal path, which goes from the starting point to the ending one,

and traverses all the edges only one. The condition to solve CPP and Open CPP will

be used to develop the Variant Open CPP algorithm in chapter 4.
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Chapter 3

Control Framework

ARA robot can configure itself into two transformations: mobile and inch-worm.

In this work, we integrated a switching control mechanism (shown in Fig. 3.1) to

the robot [20]. This control mechanism enables the robot to change its transforma-

tions depending on environmental conditions. When traversing on continuous and

smooth steel surfaces, the robot activates the mobile transformation as shown in Fig.

3.2(a). The robot navigates using a path planning algorithm with the help of differ-

ential wheels and performs visual inspection of steel bridge structures. Moreover, the

robot can move on an inclined steel surface by the adhesion forces supported by two

magnetic arrays mounted on each robot foot. There are two working modes of the

magnetic arrays: touched and untouched, indicating the distance from the magnetic

arrays to the steel surface where the robot feet lies on. Touched mode means the

distance is zero, and the untouched one keeps the distance around 1mm. The mobile

transformation requires both magnetic arrays operating in untouched mode to gen-

erate two magnetic adhesion forces, which are enough for the robot standing on the

inclined surface, and in same time still let the robot can move by its wheels. The
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Figure 3.1: The proposed control system framework for autonomous navigation

robot switches into inch-worm transformation (Fig. 3.2(b)) when it detects a com-

plex steel surface and cannot move on wheels, then activates an inch-worm jump to

the next surface. As performing inch-worm jump, only one of the robots feet touches

the steel surface. To create enough adhesive force for the robot standing, the mag-

netic array is switched to touched mode, which fully allows this array to adhere the

steel surface. The switching control mechanism controls the movement of the robot,

detects environment type and sends the appropriate command to executable nodes.

Figure 3.2: ARA robot in (a) mobile and (b) inch-worm transformation
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The control architecture of ARA robot is comprised of multiple low-level and

high-level control structures [20]. Several tasks are performed by the low-level control

structure (Arduino). The wheel’s velocity, encoder reading, and the magnetic array

function are performed in this control level. The high-level control embedded in an

on-board processor manages switching control function, point cloud data processing,

inverse kinematics and motion planning. The arrangement of the high level and

low-level controls is shown in Fig. 3.3.

Figure 3.3: The control architecture integrated into ARA robot [1]

The ARA robot control framework consists of four modules: switching control,

inch-worm transformation, mobile transformation, and magnetic array control. An

overview of the overall framework is shown in Fig. 3.1. The first two modules, which

are the contributions of the author’s work will be presented in detail.

3.1 Switching Control

The switching control S enables the robot to autonomously configure itself into two

transformations (mobile and inch-worm). The control employs switching function S,
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represented in Eq.3.1. The function takes as input three Boolean parameters: plane

availability Spa, area availability Sam and height availability Shc. These parameters

determine if there is any still surface available, while enabling the estimation of the

area of the surface and its height. A logical operation is performed on these param-

eters using function f(.). The function’s parameters are estimated from 3D point

cloud data of steel surface.

S = f(Spa, Sam, Shc) = SpaSamShc. (3.1)

The robot configures into mobile transformation if the function S returns a true value.

The false value configures the robot into the inch-worm transformation.

Plane availability: The 3D PCL of a steel surface is processed using pass-

through filtering, downsampling, and plane detection [54]. The plane detection applied

the RANSAC method [55] extracts the planar point cloud Pcl from the initial point

cloud. The plane availability is checked using Eq. (3.2):


Spa = False, if Pcl = ∅

Spa = True, otherwise.

(3.2)

Moreover, two functions get centroid and get normal vector provide the point cloud’s

centroid CPcl
and normal vector ~NPcl

of the point cloud.

Area availability: The robot feet requires an area estimation of the available

planar surface area Pcl. It is essential to ensure the availability of sufficient area for

successful robot transition. This is a popular problem in legged-robot, which has been

investigated carefully in [35–37]. In [35, 36], the authors proposed the convex-based

algorithms, which deployed convex optimization problem to determine an obstacle-
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free ellipsoid (convex one), then estimate step-able areas for a biped robot. In [37],

the authors proposed an algorithm to determine the valid convex collision-free regions

with geometrical constraints of obstacles. In those algorithms, a portion of the step-

able area, especially as the vertex number is small, was not considered due to the

convex approximation. It is a problem for our inspection robot with large feet pair

due to limited step-able areas on steel bridges. Those algorithms may not be possible

to find a step-able area for the ARA robot to worm in many cases. Thus, we developed

two algorithms, which can process a non-convex plane boundary efficiently to estimate

a step-able area for the ARA robot. Algorithm 1 extracts a non-convex boundary from

the planar point cloud, then the second one - Algorithm 2 checks the sufficiency of

the available planar surface.

Algorithm 1 Non-convex boundary point estimation from 3D point cloud data of
steel bridges
1: procedure BoundaryEstimation(Pcl, αs)
2: Planes = {xy, yz, zx}
3: dmin = ∀i∈Planes //Point along minimum value of plane i

4: dmax = ∀i∈Planes //Point along maximum value of plane i

5: Initialize Bs = {}
6: for p ∈ Planes do
7: i→ 1
8: while slpi < dmax do
9: slpi = dminp + i ∗ αs

10: PSpi = Set of points in range slpi ± αs/2
11: PclA , PclB = argmax

∀{Pi,Pj}∈PSpi

{‖Pi − Pj‖}

12: Bs = Bs ∪ {PclA , PclB}
13: i = i+ 1
14: end while
15: end for
16: return Bs

17: end procedure

The boundary points estimated in Algorithm 1 are performed by a window-based

approach. The algorithm’s input is the point cloud Pcl of the estimated planar surface

and a slicing parameter αs. At first, we calculate the two furthest points represented as
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dmin and dmax in the point cloud Pcl along each plane, then the point cloud is divided

into multiple smaller slices along the three planes. For each slice in a particular plane

p, the slicing index slp is determined, which represents the center coordinate of the

slice as shown in line 9 of algorithm 1. After that, the point sets PSp in the range

slp ± αs/2 is extracted from Pcl. This sliding factor is experimentally determined

based on the point cloud size. For each set of points from PSp, two furthest points

(PclA , PclB) are extracted. These two points are estimated as the boundary point for

that particular slice and added to the boundary point sets Bs. This approach helps

the algorithm works well with plane with small holes inside. A pictorial representation

of the boundary estimation algorithm is shown in Fig. 3.4.

Figure 3.4: Boundary point estimation from 3D point cloud data

After determining the boundary points Bs, the area availability variable Sam is

estimated by using Algorithm 2. The inputs are the boundary points Bs, point cloud

centroid CPcl
, normal vector of point cloud ~nPcl

, length l and width w of robot feet,

and distance tolerance t. At first we calculate the n closest points (Nclos) from Bs to

the point cloud centroid CPcl
. For each point, Ni in the set Nclos, a set of computa-

tions is performed to estimate the plane corners for adherence to robot wheels. The
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Algorithm 2 Area Checking and Pose Estimation
1: procedure Area(Bs, CPcl

, ~nPcl
, w, l, t, Sam)

2: Nclos = Find n closest points to CPcl
from Bs

3: for Ni ∈ Nclos do
4: R = {}, //Estimated rectangle corner points

5: ~exi = Ni − CPcl

6: ~ezi = ~nPcl

7: ~eyi = ~exi × ~eyi
8: kw = w

| ~exi |
eyi and kl = b

| ~eyi |
exi ,

9: {R1, R2} = {Ni + kw, Ni − kw}
10: R = R ∪ {R1, R2}
11: R = R ∪ {R1 + kl, R2 + kl}
12: M = ∀ri∈R{

ri+ri+1

2 }
13: R = R ∪M
14: Sam = True
15: for ri ∈ R do
16: Qi = Find m closest points to ri
17: dri = ‖dri , CPcl

‖ and dQi = ‖Qi, CPcl
‖

18: Si = (dri < dQi) ∨ (
dri−dQi

dri
< t

19: Sam = Sam ∧ Si
20: end for
21: Pose = {Orientation, Position}
22: if Sam == True then
23: Rc = Centroid of R
24: Orientation = ( ~exi , ~eyi , ~ezi)
25: Position = (xRc , yRc − l/4, zRc)
26: return Pose
27: end if
28: end for
29: return False
30: end procedure
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coordinate frame vectors ~exi
, ~eyi and ~ezi are calculated for point Ni. In the next step,

the algorithm estimates the corner points of a rectangle of width w and length l, which

is also robot foot’s width and length, respectively. We estimate the rectangle’s edges

parallel along the vectors ~exi
and ~eyi . Therefore, the four corners R of the rectangle

are estimated using these two vectors. Additionally, we include four middle points of

the estimated rectangle corners in R to alleviate point cloud collection error as well as

accommodate for the non-convex shape of the steel surface. After the estimation step,

we find m closest points to R from the Bs to measure if the points in R are inside the

boundary. Hence, we calculate the distance from point cloud centroid CPcl
to R and

Q, respectively. The algorithm considers a point, which lies inside the boundary if its

tolerance is less than t and the distance to centroid should be less than its neighbors.

The algorithm’s performance is presented in Fig. 5.2(b)-(d). When the value of Sam

is true for all the conditions, we consider those sets of points as rectangular points.

Height availability: The height availability Shc is crucial for the switching con-

trol. Based on this parameter, the switching control activates the robot transforma-

tions. At first the point cloud’s centroid CPcl
is calculated along the camera frame fc.

Then it is transformed to the robot base frame frb using Eq. 3.3.

PCfrb
= TfrbfcPCfc

, (3.3)

where (PCfrb
, PCfc

) are coordinates of the centroid Cc in the camera frame and the

robot base frame, respectively. Tfrbfc is the transformation matrix from the camera

frame fc to the robot base frame frb.

The plane height zfrb coordinate is then compared to the robot base height. If

they are equal, the returned result is true, and the robot is configured as mobile trans-

formation. Otherwise, it returns false, and the robot go to inch-worm transformation.
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The height availability condition is shown as in Eq. 3.4.


Shc = True, if zfrb = zrobotbase

Shc = False, otherwise.

(3.4)

3.2 Inchworm transformation

The inch-worm transformation enables the robot to perform an inch-worm jump from

one steel surface to another as shown in Fig. 3.5. At first, the permanent magnet

array on the second foot of the robot is set to touched mode, which adheres the leg on

steel surface and generates a strong adhesive force for the robot to stand and perform

the worming. A controller manipulates the joints to move the first robot leg towards

the target plane as shown in Fig. 3.5(b). As the first leg touches the target surface,

the first and second permanent magnetic arrays are switched to touched mode and

untouched mode, respectively. After that, the second leg detaches from the starting

surface as in Fig. 3.5(c). Finally, in Fig. 3.5(d) the second leg is adhered the target

surface.

Converting from mobile (Fig. 3.2(a)) to inch-worm transformation is challeng-

ing for the motion planner to create a trajectory. To have a better performance, a

convenient robot pose Pconv is proposed where the robot should move to firstly as

starting of inch-worm transformation. From there, the motion planner will generate

a trajectory for the first leg to move the destination. The worming is completed by

moving the second leg to the target surface and reform mobile configuration. To have

the target pose, the robot needs to determine the target plane and its pose, which

are the outputs of Algorithm 2.

The flexibility of the robot in worming is made of the six DoF arm. The revolute

joints of the arm in Fig. 3.2(b) can rotate along three different axes separately. For
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Figure 3.5: Inch-worm jump from one steel surface to another

example, the joint 2 and joint 5 in Fig. 3.2(b) are configured to rotate around y-axis.

The rest of the joints are positioned to rotate around z-axis. This configuration was

selected for maintaining symmetry so that the manipulator can move efficiently in

both worming and mobile mode. Our previous research states in detail elaboration

of the robotic arm in [1].

3.3 Summary

In this chapter, the control framework and the detail of two modules: Switching

Control and Inchworm transformation were described. The Switching control helps

the robot change the operation types, which make the robot move in two types of steel

bar surfaces: smooth and continuous, and inclining. The Inchworm transformation

module determines the target surface, its pose and generates a motion planning for

the ARA robot movement.
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Chapter 4

Navigation Framework

As the ARA robot works on mobile transformation, it traverses all steel bars of a

steel bridge to detect the failure. To do the task in shortest time, it is needed to solve

an optimization problem to determine the shortest path, which goes through all the

available steel bars at least once [56]. The task is sent to the motion planning mod-

ule, and the inputs are point cloud (PCL) data, target position, and robot location

from SLAM. The PCL data of the steel bridge is filtered and then projected into a 2D

plane, which is the xy plane of the robot coordinate frame [20]. The structure segmen-

tation algorithm - Algorithm 3 separates the processed data into the clusters, then

those boundaries are estimated by Algorithm 2 - Non-Convex Boundary Estimation

(NCBE) [20]. Graph construction algorithm - Algorithm 4 processes the boundaries

data to build a graph that represents the steel bridge structure, then Algorithm 5 -

VOCPP algorithm solves the optimization problem to find the shortest path. The

VOCPP algorithm can solve any graph with any starting and ending points. A single-

query path planning such as RRT receives the cluster boundaries and shortest path as

inputs and builds a traverse path for the ARA robot to go along the steel bars. In this
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path planning, we propose Algorithm 6 called Point Inside Boundary Check - PIBC

to determine efficiently the collision and availability of the robot configuration by the

boundaries. The output of the motion planner is sent to the ARA robot controller,

which regulates the robot at the lower level to perform the motion. The framework

is shown in Fig. 4.1.

Figure 4.1: The proposed navigation framework on mobile mode

4.1 Steel Bridge Structure Segmentation

Motion planning for a robot traversing on a steel bridge is a challenging task because

of the limitation of working space (steel bar’s dimensions) and the steel bridge struc-

ture’s diversity. Serious damage occurs if the robot moves out of the steel bar edges.

Therefore, steel bridge perception is critical to build a motion planner. The bridge

structure can be perceived by a convolutional neutral network (CNN) [57], however,

it requires a huge data set and expensive tasks such as labeling. Moreover, with the

variety of the structures, in the best of the author’s knowledge, there is no CNN
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working on steel bridge structure detection.

To detect the steel bridge structure, we propose a method based on the bridge’s

geometric features that they typically consists of two components: (1) steel bars and

(2) cross areas. As the method segments the structure into these two components,

the bridge structure is represented by a graph whose edges and vertices are the steel

bars and cross areas, respectively. The steel bars are irregular in shape with one

dimension being much longer than other, and their two ends connect two cross areas.

The cross areas are regular in shape and its dimensions are similar, and there are at

least two steel bars connected with it. The difference in the geometric features of the

steel bars and cross areas are used to classify them.

From the feature analysis, an algorithm is developed based on EM-GMM classifi-

cation [38, 40, 41]. The EM-GMM classification is able to separate the structure into

multiple clusters with irregular shapes. However, it requires a specific cluster number

as input, and if there are several types of distribution in the data, EM-GMM does

not works well. To deal with unknown cluster numbers, the algorithm works on a set

of cluster numbers and determines which is the most suitable number no for cluster

segmentation. The number no is then inputted into the EM-GMM algorithm [38,40]

that generates a set of clusters.

To find the best cluster number for the steel bridge segmentation, a new concept

- neighbor cluster - is introduced. Two clusters are considered as neighbors if they

share a border with the length at least lb. From that, in Fig. 4.2b, cluster 1 and

3 are considered neighbors because the border BC is longer than the threshold lb.

Although there are some contacting points, there can be no neighbor-relationship

between clusters 1 and 2 because the border AB is shorter than lb. The same applies

to cluster 1 and 4 since CD ≤ lb. From this idea, if the cluster numbers no are

optimal, the cross area should be the one with most neighbor clusters nm as shown in
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(a) (b)

Figure 4.2: (a) A Cross- shape steel bar (camera view on the right) and (b) its
segmentation

Fig. 4.2b (cluster 3). Therefore, the first idea is that the cluster number no is optimal

if it makes the cross area cluster having nm with highest value.

The most neighbor cluster numbers nm works well for K-, T-, Cross- shape. How-

ever, for the structures such as I- and L- shapes, the highest number of neighbor is

not enough to segment correctly. For L-shape, as the cluster number is more than

three, there is several clusters with the same neighbor cluster number, and it is not

possible to find the cross area cluster. For I-shape, there is two cross-area cluster in

the structure. Thus, it is needed another feature to handle these shapes, and the dif-

ference between the most neighbor number nm and the second most neighbor number

ns with the same nc is considered. Combining the two features, the ratio r is defined

in Eq. (4.1), and the highest r will be selected.

r =
nm

nm + ns

+
nm

nc

. (4.1)

In Eq. (4.1), the first term tends to keep nc small, and the second term tends to make

nm large. nc is the number of clusters.

The procedure detail is presented by the psudo-code in Algorithm 3. The inputs
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Algorithm 3 Steel Bridge Structure Segmentation
1: procedure Pcl Segmentation(Pcl, Ncmin, Ncmax)
2: Initialize nindex, rn = ∅
3: for nc ∈ {Ncmin, Ncmax} do
4: Sc = EM-GMM Algorithm(Pcl, nc)
5: for j ∈ {0, nc} do
6: b[j] = NCBE(Sc[j], sliding factor)
7: end for
8: Determine neighbor clusters for Sc[j]
9: Get the most and second most neighbor numbers nm, ns

10: Calculate r from Eq. 4.1, and add to set rn
11: Add the nc in set nindex
12: end for
13: Select the highest r in rn, and get no from nindex
14: Sb = EM-GMM Algorithm(Pcl, no)
15: return Sb
16: end procedure

are the PCL data, and a range of cluster number from Ncmin to Ncmax. As nc runs in

the range of [Ncmin to Ncmax], EM-GMM algorithm segments the PCL data into a set

of clusters Sc. From line 5 to 7, NCBE algorithm determines the set of boundaries b

corresponding to Sc. The neighbor number for each cluster is determined in line 8,

and from that the most and second most cluster numbers are specified. From nc, nm,

and ns, the ratio r is calculated, then the r and nc are putted into the sets rn and

nindex, respectively. Step 13 selects the highest r, which is inputted into EM-GMM

algorithm to get the most appropriate segmented clusters Sb.

4.2 Graph Construction and VOCPP

From an inspection requirement aspect, the ARA robot should monitor all available

steel bars in the bridge structure to check for any failure. As the cross areas and steel

bars are considered as nodes and edges, respectively, the inspection requirement is able

to be solved by inspection route problem or Chinese Postman Problem (CPP) [53].

Therefore, a graph representing the structure is constructed, then the optimization
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problem is solved to find the shortest inspection route for the robot.

Algorithm 4 Graph Construction
1: procedure Graph Construction(data cluster set Sbo, threshold dmin)
2: Initialize E = {}, V = {}, current vertex vc
3: Calculate the center point set Sc of boundary set Sb
4: Determine neighbor matrix Mn

5: Determine borders set Sbd among the neighbors from Sc,Mn

6: Determine the middle point set Smd of Sbd
7: Add all vertices Sc, Smd into V : V = Sc ∪ Smd

8: Build edges e by connecting vertices in V if its corresponding cluster are neighbors
(from Mn

9: Estimate line set Sl to fit the cluster set Sc by PCA
10: Determine intersection of feature lines & their boundaries: Il = Sl ∩ Sb
11: for i ∈ Il do
12: for j ∈ V do
13: if distance from Il[i] to V [j] larger than dmin then
14: Add Il[i] into V
15: Edge e = from Il[i] to its center vertex
16: Add e into E
17: end if
18: end for
19: end for
20: return G = (V,E)
21: end procedure

Algorithm 4 builds the graph from the cluster boundaries set Sbo (from Algorithm

1) and a distance threshold dmin. Firstly, the center points Sc of clusters, neighbor

matrix Mn, and border middle points Smd are determined from step 3 to 6. All the

points in Sc and Smd are added into the vertices set V . The edge set is built by Mn

and V in step 8. After that, a set of feature’s lines that are fit to the boundaries

are calculated by PCA method [58]. Step 10 determines the intersection set Il of the

feature’s lines and their cluster boundary Sb. From step 11 to 19, there are dual loops

to check whether the distance from a point in Il to a vertex in V is longer than the

threshold dmin. If yes, then that point and an edge, which connects it to its center

point, are added into the vertex set V and the edge set E, respectively. The algorithm

outputs G = (V,E), which is sent to Algorithm 5.
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Algorithm 5 Variant Open CPP
1: procedure Minimal Path(G = (V, E), vs, vt)
2: Initialize Gm, Smov, Sov
3: Find all odd vertices and add to Sov.
4: if Sov = ∅ then
5: Find shortest edge set Ee connecting vs and vt
6: Assign Gm = (V, Em = E ∪ Ee), go to 24.
7: end if
8: if (vs, vt) ⊂ Sov then
9: Smov = Sov\{vs, vt}, Gm = G, go to 23.

10: end if
11: if vs /∈ Sov and vt ∈ Sov then
12: Select a vertex vc ∈ Sov, which creates the shortest path Ec connecting vs to it
13: Smov = Sov\{vt, vc}, Gm = (V, E ∪ Ec), go to 23
14: end if
15: if vs ∈ Sov and vt /∈ Sov then
16: Select a vertex vc ∈ Sov, which creates the shortest path Ec = connecting vt to

vc
17: Smov = Sov\{vs, vc}, Gm = (V, E ∪ Ec), go to 23
18: end if
19: if vs /∈ Sov and vt /∈ Sov then
20: Select two vertices vc1, vc2 ∈ Sov, which creates two paths Ed1, Ed2 that sum of

them is shortest
21: Smov = Sov\{vc1, vc2}, Gm = {V, E ∪ Ed1 ∪ Ed2}, go to 23.
22: end if
23: Using Gm, find a set of edges Ea whose sum is shortest to convert all vertices in

Smov to even vertices.
24: Find the Eulerian path Probot from Gn = (V, Em ∪ Ea)
25: return Probot

26: end procedure

After constructing the graph, the next step is to find the shortest path to inspect

all the available steel bars. As the robot inspects the bridge parts step by step, the

starting and ending point should be different. Moreover, the steel bridge structures

are diverse, thus the input graph could consist of Euler circuit, Euler path, or none.

Algorithm 5 - Variant Open CPP (VOCPP) is proposed to solve the optimization

problem that is based on Euler Theorem [59] for Eulerian trail. The algorithm con-

verts any input graph into an open CPP graph by adding the shortest path into the

input graph and makes a new one. The added paths are selected by using Dijkstra’s

algorithm [60]. The algorithm’s output is the shortest path, which visits each edge
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at least once and starts and ends at the predefined positions.

The pseudo-code is shown in Algorithm 5. The inputs are the graph G = {V,E},

starting and target vertex vs, vt. Step 4 checks whether an Eulerian circuit exists in

the graph. If yes, a path generated by Dijkstra’s algorithm with two vertices vs, vt

is added into the graph. After that, the algorithm will jump to step 24. If the odd

vertex set Sov are not empty, step 8 checks whether vs, vt belong to the set. If yes,

both are popped out, and a set of shortest paths is added to convert all the remained

odd nodes in Sov to even. Steps 11, 15, and 19 check whether the vertex vs or vt

stays in the Sov, or if both are out of the set. If any input vertex is odd, it will be

popped out. Vertices in Sov that possess the shortest paths to the even input vertices

are connected by a shortest path to convert the even input vertex into odd. After

that, the selected vertex is also popped out of Sov. All then go to step 23 to convert

all the odd vertices in the remaining Sov into even vertices by Dijkstra’s algorithm.

Step 24 will find the shortest path that traverses all edges of the graph by Fleury’s

algorithm [59].

4.3 Point Inside Boundary Check - PIBC

After receiving the shortest path from the VOCPP algorithm, a motion planning is

deployed to generate a path to control the robot to traverse all the defined edges. It

plans the motion path for one edge each time.

In our scenario, the robot moves on a set of steel bars with assumption that there

is no obstacle on it. The free configuration, however, is limited by the space of the

steel bar surface. The serious damage can occur if the robot moves out of the steel

bar edges. It is a hard constraint to construct a free configuration Cfree for the robot.

To utilize all available configurations, the point cloud boundary is applied to build
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(a) (b)

Figure 4.3: Point inside the boundary check

the obstacle-free configuration. After receiving the boundary set Sbo from NCBE

algorithm, a robot configuration ci belongs to the free configuration Cfree if all of its

projected points Spp lie inside one of the steel bar boundaries bi ∈ Sbo.

Algorithm 6 Point Inside Boundary Check
1: procedure Sample Check(Sbo, c, P )
2: Calculate the cluster center point set cp of each boundary in Sbo
3: Project from configuration c to the robot position set PS
4: Initialize boolean set bs[len(PS)] = Fail
5: for i ∈ (0, len(PS)) do
6: Calculate distances ds from PS[i] to cp
7: Select n center points, which are closest to PS[i]
8: for p ∈ (0, n) do
9: Find mp closest points to PS[i] in each Sbo[p]

10: for j ∈ mp do
11: Calculate distance dmpj from mp[j] to cp[p]
12: if ds < dnpj then
13: bs[i] = True
14: end if
15: end for
16: end for
17: end for
18: for i ∈ (0, len(PS) do
19: if bs[i] = Fail then return Fail
20: end if
21: end for
22: return True
23: end procedure

To determine whether a point lies inside a steel bar boundary, a geometric tech-

nique named center-closest points is applied as shown in Fig. 4.3. A sample point P

is considered inside the boundary if its distance ds to the center point C is shorter
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than the distances dn of its closest neighbors to the center. The closest neighbor set

N is determined by finding the minimal Euclidean distance set.

The implementation of the technique is presented in Algorithm 6. The inputs are

the boundary set Sbo, robot configurations c, and robot parameter set P . From step

5 to 17, the loop runs through all the robot configurations. For each configuration, it

finds a set of clusters in which it possible belongs to. For each cluster, the technique

center-closest points is deployed to specify whether it lies inside that boundary. If the

configuration stays inside only one of the cluster boundary, its corresponding boolean

variable bs[] will set True. Step 18 uses a for loop to check whether there is any robot

configuration not belonging to any cluster boundary. The algorithm returns True if

any configuration lies inside a boundary.

4.4 Summary

In this chapter, the navigation framework for the ARA robot on mobile transforma-

tion is presented. It consists of four algorithms: Steel Bridge Structure Segmentation,

Graph Construction, VOCPP, and PIBC. Steel Bridge Structure Segmentation algo-

rithm determines the most appropriate cluster number to segment the steel structure,

which is essential to build a graph by Graph Construction algorithm. VOCPP algo-

rithm uses the outputted graph and generates the shortest path, which traverses all

the steel bars at least one, with any starting and ending points. The last algorithm

PIBC is an integrated portion of motion planner, which determines whether a robot

configuration point lies inside the steel bars.
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Chapter 5

Experiment and Results

In this chapter, the experiments and results are presented and discussed. The exper-

iments were performed indoor with several samples of steel bridge structures. Due

to the lack of equipment and limited indoor space, there are two sets of steel bridge

structures were built to test the ARA robot on two transformations: Inchworm and

Mobile, which are discussed in section 5.1. The results are discussed in section 5.2.

5.1 Experiment Setup

The experiments were implemented on the ARA robot version 1.0, which was derived

from [1] with an additional camera module. An RGB-D camera (ASUS Xtion Pro

Live) is attached to the robot for point cloud collection and visual inspection. The

camera calibration’s parameters were integrated from the method implemented by

[54]. The robot was localized by aruco marker, which was placed on the robot standing

surface. We performed a geometric calculation to locate the position between the

aruco marker and the robot base. Additionally, an Intel NUC 5 - Core i5 vPro
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was incorporated for employing the robotic operating system (ROS) as well as the

inspection framework.

The first experiment would test the control framework, which can switch the robot

transformations, and control the robot to perform the inchworm jump, and run on

smooth surfaces. Two steel slabs located perpendicularly from each other were set

up for this task (Fig. 5.4). The steel slabs are highly corroded to replicate steel

defects. The second experiment was on the robot navigation as running on smooth

surfaces. Several steel bridge structures such as K-, L-, I-, T-, and Cross- shapes were

assembled on the ground (Fig.5.5 a-e) to simulate the typical steel bar structures. The

following section describe the experiments and their results elaborately.

5.2 Results

The results of two experiments - control and navigation frameworks were presented

and discussed. They are two critical portions, which constituted the autonomous

system for the ARA robot.

5.2.1 Switching control

At starting, the PCL data of a steel bridge structure sample was collected from the

robot camera. An example of the initial PCL was shown in Fig.5.1(a). After perform-

ing some pre-processing operations such as pass-through filtering and downsampling,

the data was sent to plane detection to extract the planar surface. The processed

PCL was shown in Fig.5.1(b). The coordinate frame was also shown in the figure

with x-axis in red, y-axis in green, and z-axis in blue.

After obtaining the planar surfaces, the surface boundary points and Area avail-

ability checking were performed by Algorithm 1 and Algorithm 2 on two different
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Figure 5.1: Planar surface extraction from 3D point cloud of steel surface

surfaces, one containing sufficient area for movement and the other without. Us-

ing Algorithm 1, two boundary points of the two different point cloud as shown in

Fig.5.2(a) and Fig.5.2(c).

(a) (b) (c) (d)

Figure 5.2: (a) Boundary set, (b) Area rectangle set, (c) The selected area rectangle,
and (d) Pose estimation

The area availability check from Algorithm 2 was employed using the boundary

point estimated. The algorithm parameters were as following : n = 5,m = 3 and

t = 0.02. Five rectangles were estimated for the robot feet with this algorithm as

shown in Fig. 5.2(b) in red, yellow, blue, green, and purple color. In Fig. 5.2(b),

several corners of all the red, yellow, purple, and blue rectangles were outside of

the point cloud area. It represented that these rectangles area were not sufficient
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enough for an inch-worm jump. Only the green rectangle was inside the point cloud,

satisfying area requirement. The selected rectangle is shown in Fig. 5.2(c) (in red

color). Since there is enough area for an inch-worm jump, the variable Sam is set to

true by the algorithm. After that, the planar surface pose was estimated as shown in

Fig. 5.2(d) with three orientations shown in red, green, and blue color, respectively

on the point cloud surface.

The surface pose was then transformed into the robot base frame. If the pose’s

height (corresponding to z- axis in the robot base frame) was equal to robot base

height, the value of Shc was set to True, and the robot configured itself as mobile

transformation. Fig. 5.3(b) represented another scenario as the point cloud is from

a surface, which was d = 7cm lower than the robot base. In this case, the heights

were different, then the returned value of variable Shc was false, and robot performs

inch-worm transformation in the next step.

(a) (b)

Figure 5.3: Surface Height Check (a) Same Height & (b) Different Height

5.2.2 Inchworm Transformation

KDL Inverse Kinematics and RRTConnect motion planner in MoveIt package were

selected to implement the task, which calculated the robot inverse kinematics and

generated a trajectory for an inch-worm jump from point Pconv to the target plane. To

do that, a primitive robot model was built in urdf format, with the exact dimensions,
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joint types and limits to ARA robot. The generated trajectory - a ROS topic - was

a set of robot joint angles, which the robot joints followed to reach the target pose.

The inch-worm performance of the robot was shown in Fig. 5.4. In the beginning,

the robot activated and lowed down the magnetic array to touch the steel surface;

then it transformed from the mobile configuration to the convenient pose Pconv by

following a predefined trajectory as shown in Fig. 5.4(a) and Fig. 5.4(b). As reaching

point Pconv, the robot started following the RRTConnect trajectory. As the first foot

reached the target surface, the robot switched both magnetic arrays working modes,

the one on the first foot was changed to touched mode, and the other was set to

untouched mode as shown in Fig. 5.4(c)-(d). Next, the second robot foot transformed

into the target plane as shown in Fig. 5.4(e)-(f). The whole robot operation was

filmed, and the video-clip was uploaded at https://youtu.be/SHk5IIOBRdA, which

was sped up three times than the experimental operation.

Figure 5.4: inch-worm transformation: a) magnetic array of second foot touched the
base surface, b) first foot moved to convenient point, c) first foot reached target pose
and touched the second surface, d) magnetic array of second foot was released, e) and
f) second foot moved to target pose

5.2.3 Navigation Framework

In this experiment, the four algorithms in section 4 were tested on steel bridge struc-

tures such as L-, Cross-, T -, K, and I- shapes. Due on the lab condition, we combined

 https://youtu.be/SHk5IIOBRdA
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 5.5: The images of input structures (a-e), the corresponding point clouds (f-j),
the segmentation (k-o), boundary estimation and graph construction (p-t), and the
shortest path (u-y)

several steel bars on the ground to make the shape types mentioned as shown in the

first row of Fig. 5.5. To present the experiment results succinctly, the structure

images and PCL data were rotated 90 degree with the viewpoint from the right to

left.
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Structure Segmentation and Boundary Estimation

The result of the segmentation algorithm was shown in Fig. 5.5. The images in the

first and second rows were the RGB and point cloud data of Cross-, K -, L-, T -, and I -

shapes after filtering and projected into the robot coordinate frames. The view-point

of camera was from right to left, and the farther to the camera, the more degrading of

sensory data quality. The efficiency of Algorithm 3 was shown in the third row of Fig.

5.5. The algorithm ran well and was able to segment properly the cross areas and

the steel bar parts, except the I - shape. The reason was that there were two cross

areas in I -shape structure, which made algorithm 3 confuse. This problem will be

improved in the future research. By a robust graph construction algorithm, however,

the graph of I - shape could be still built and helped generate the path for the robot.

After segmenting, the clusters were sent to the NCBE algorithm [20], which worked

efficiently to give back the boundaries for the cluster.

Graph Construction and VOCPP

Graph Construction (Algorithm 4) and VOCPP (Algorithm 5) processed the boundary

data from the NCBE algorithm, and outputted the result on the fourth and fifth rows,

respectively. In the fourth row, the graph was built based on the center point, edge

points of the boundary and the border points between the neighbor clusters. The

graphs covered the steel bars’ length for most structures, except the Cross- structure

(Fig. 5.5p). It was because of the distance from the center points to the corresponding

edge points were too close, the depth sensor could cover all the distance. Therefore, it

was no need an edge to connect the two points. In Fig. 5.5v, the edge (12-3) did not

go along with the steel bar but crossing on one edge. It occurred because the data

quality was not good, and influencing the line fitting algorithm. The same reason

happened to the T - structure in Fig. 5.5s.

The figures in the last row of Fig. 5.5 show the shortest path generated by the
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VOCPP algorithm. Due to the probabilistic feature of EM-GMM algorithm, the

cluster indices changed each time running. Starting at a random vertex vs, the robot

followed the arrow lines to the next vertex, and comes back if there was a dead end.

The route ended at the predefined ending vertex vt, and the generated paths were

optimal with shortest length. Again, due to the point cloud data quality, in Fig.

5.5v,x, the edges (3,12), (2,11) were not possible for robot to traverse. To prevent

the robot go on the edges, the motion planner was needed to handle this case.

Point Inside Boundary Check - PIBC and Path Planning

Using PIBC algorithm with RRT motion planner, a motion path was generated as

shown in Fig. 5.6 in L-shape structure. The algorithm was significantly affected by the

data quality, however, it still worked well to determine whether a robot configuration

belong to the free space. To reduce the processing time for the robot, RRT motion

planning [61,62] was deployed in the robot.

Figure 5.6: Result of Algorithm 6
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Chapter 6

Conclusion and Future Work

In this chapter, the research results are summarized and highlighted the major con-

tribution. Moreover, some problem arose in the experiments showed the needed

improvement for the robot to run autonomously on real steel bridge structures.

6.1 Conclusion

In this thesis, control and navigation frameworks were proposed for ARA robot.

In control framework, a switching control mechanism for autonomous navigation of

bridge-inspection robots was developed. The unique feature of switching in two modes

enhanced the flexibility of navigation and inspection. The most significant part of

this framework are two algorithms: Algorithm 1 - Non-convex Boundary Estimation

(NCBE) and Algorithm 2 - Area Availability to detect and determine area, plane and

height availability.

The navigation framework was developed for ARA robot to run on mobile trans-

formation. In this transformation, the robot needed to cross and inspect all the steel
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bars. The major portions of this framework were four algorithms, which could process

the depth data, then outputted a traverse path for the robot. Algorithm 3 - Structure

Segmentation segmented the steel bar structures into two sets: steel bars and cross

areas. Based on the segmentation result, the graph construction - Algorithm 4 built

a graph that represents the bridge structure. The graph is inputted to Algorithm 5

- VOCPP to generate the shortest path for the robot to move and inspect all the

available steel bars. Algorithm 6 helped RRT path planning generate a trajectory,

which the robot controller regulated the robot to follow.

The two proposed frameworks are crucial portions to build an autonomous frame-

work, which makes ARA robot implementing the tasks on the real steel bridge struc-

ture. To get a full autonomous framework for ARA robot, there are still several

problems, which needed to be solved and improved, as described in the following

section.

6.2 Future Work

Due to the complexity of Inchworm manipulator-like structure, the motion planner

RRTConnect in Inchworm transformation was not robust in calculating the inverse

kinematics and generating the trajectory for the robot, and needed to redo sometimes.

This limits the jumping operation of ARA robot in complex steel bridge structure.

Further investigation of deployment in actual steel bridges, building a new motion

planner for this robot, and optimization of inch-worm transformation is necessary as

the next phase of the research.

In the navigation framework, the efficiency of the algorithms needs to extend to

process more bridge structures. The stability of the segmentation algorithm, which

depends on the probability method, is not in well-operating and sometimes outputs
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inappropriate segmentation. To solve that, the formula 4.1 could need to be refined,

or a CNN needs to be developed to provide better results for this algorithm.

Moreover, the integration of multiple portions into a single framework to handle

the real-world environment was the most challenging part of this research. It needs a

cooperation of a team with interdisciplinary knowledge and skills to let ARA robot

run on a real steel bridge.
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