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Abstract

An autonomous concrete crack inspection system is necessary for preventing haz-

ardous incidents arising from deteriorated concrete surfaces. In this thesis, we repre-

sent a concrete crack detection framework to aid the process of automated inspection.

Deep neural networks highly suffer from the gradient vanishing problem [1]. The ef-

fect of gradient vanishing problem is very prominent on class imbalanced data-sets

such as crack detection. In this work, a deep neural architecture is proposed for

alleviating the effect gradient vanishing problem. Furthermore, A feature silencing

module is incorporated in the crack detection framework, for eliminating unnecessary

feature maps from the network. This module reduces the computational costs of deep

neural networks. The overall performance of the network significantly improves as

a result. Experimental results support the benefit of incorporating feature silencing

within a convolutional neural network architecture for improving the network’s ro-

bustness, sensitivity, and specificity. An added benefit of the proposed architecture is

its ability to accommodate for the trade-off between specificity (positive class detec-

tion accuracy) and sensitivity (negative class detection accuracy) with respect to the

target application. Furthermore, the proposed framework achieves a high precision

rate and processing time than crack detection architectures present in literature.
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Chapter 1

Introduction

A fully functional and healthy infrastructure is the heart of the modern transportation

system. The main element of these infrastructures is concrete. A mixture of several

different types of rocks, limestone, clay, and water is known as concrete. The water in

the concrete evaporates over time due to environmental factors and continuous usage.

As a result, the concrete surface hardens over time, leading to severe deterioration

such as cracking, spalling, abrasion, etc. [7–9]. There are other factors responsible for

concrete surface deterioration such as overloaded vehicles, chemical exposure, corro-

sion with the metals infused in concretes, and improper dying as reported in [1, 10].

Due to severe deterioration of concrete surface infrastructure assets require frequent

inspection and repair. Furthermore, unavoidable circumstances such as road accidents

may occur because of defected infrastructure. Therefore, a proper civil infrastructure

inspection system is essential to avoid unwanted circumstances as well as prevent

traffic disruption. Manual inspection has been employed for a long time using heavy

and large equipment by civil engineers to assess the structural defects. The time-

consuming and labor-intensive nature of this type of inspection system causes traffic

disruption. Furthermore, the manual assessment procedure is perilous for humans in
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inaccessible regions of civil infrastructures such as under bridge decks and underwater

beams. On the contrary, an autonomous civil infrastructure inspection system mon-

itors structural health continuously with the least human intervention [11]. Such an

autonomous robotic system can capture data for surface-level visual inspection and

defect identification of civil infrastructures [3, 12–14]. To aid the autonomous crack

inspection process a defect(crack) detection algorithm is proposed in this thesis.

1.1 Literature Review

Several image processing techniques, such as thresholding [15–19], morphological op-

erations [20–25], edge detection algorithms [26–29] and adaptive binarization tech-

niques [30] for crack detection in civil infrastructure evaluation have been reported

in the earlier literature. The defected areas of concrete surface exhibit two impor-

tant properties. First, these defects do not have any definite shape or pattern. As

a result, these defects do not represent any distinct feature properties. As a result,

application of statistical estimation becomes difficult for accurate identification. The

rare occurrence and aberrant shape of concrete defects such as cracks closely resemble

the properties of anomalies. Therefore, concrete crack detection can be contemplated

as an anomaly detection problem, in which anomaly detection techniques [31,32] are

applicable.

The aforementioned techniques extract both local and global features for effective

concrete crack detection. Although these techniques are computationally inexpen-

sive, they have several disadvantages. These techniques generate unnecessary feature

points because of the highly textured nature of concrete images. Removal of these

feature points (using median or mean filtering) eliminates significant defect locations.

The precondition of selecting a unique set of parameters for different image sets is
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a challenging task for these image processing methods. Apart from this, the feature

properties of cracks and edges are different from each other. The pixel connectivity

of edges is smoother than cracks. Unlike edges, crack pixels are not continuously

connected. As a result, traditional image processing techniques fail in crack classifi-

cation [2, 3, 27]. An example of a crack detection result using the traditional image

processing method on a clean concrete image is shown in figure 1.1(b). A Difference

of Gaussian filter was applied to the original crack image in figure 1.1(b). It is evi-

dent from this figure, this filter identifies a lot of false cracks. These crack locations

represent crack like appearance in the concrete image. Apart from this, the pixel

connectivity in the original image also affects the detection result.

Figure 1.1: Example of crack detection: (a) Original image, (b) Image processing
technique (Different of Gaussian)

Moreover, concrete defect images are affected by environmental non-uniformity

such as illumination, noise, shading, and many more. The image processing methods

are highly sensitive to these environmental factors [2, 3].

Machine learning architectures were employed for crack detection to achieve ro-

bustness toward crack detection. Machine learning architectures such as Support

Vector Machines (SVM) [20, 28, 33, 34], Adaboost [28] and Multi-Layer Perceptron

(MLP) [35] networks, were used preliminary for concrete crack identification. Later,
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a combination of machine learning and image processing techniques were employed to

improve the defect detection result [36,37]. Although the accuracy of defect detection

improves with these methods, they inherit the complexity of appropriate parameter

selection.

Since artificial neural networks (ANN) update the parameter weights autonomously,

they are nominally affected by the aforementioned parameter selection problem.

Therefore, many ANN structures were employed for concrete distress identification

[38,39]. The astounding performance of convolutional neural networks (CNNs) [40] in

many image classification and object recognition applications, aspired the researchers

to employ CNN architectures for concrete defect identification. CNN architectures

closely simulate the functionality of the biological visual cortex by representing corti-

cal areas as individual layers. These layers extract unique feature sets for a spe-

cific data-set and learn their statistical properties. Some of the CNN architec-

tures employed for concrete crack identification applications are ResNet [1, 41, 42],

AlexNet [43–45], GoogleNet [46] and VGG-Net [47]. Apart from this, CNN architec-

tures were designed specifically for concrete crack identification purpose [2, 3,48–50].
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Table 1.1: A review of the methods for crack detection

Area Applied Techniques Benifits Drawbacks

Image Processing 

Edge Detection operators 
[26-29] Useful for extracting both 

local and global feature 
points for crack pixel 
localization

1. Selection of a 
perfect parameter set
2. Highly effected by 
the highly textured 
concrete background

Thresholding operations 
[15-19]

Morphological operations
 [20-25]

Image Binarization [30]
Introduced an adaptive 
thresholding for 
parameter selection

The effect of background 
noise still remained

Machine Learning

Adaboost [28] Less effected by background 
noise in comparison to
image processing
techniques

Require image processing
methods for localization

SVM [20, 28, 33, 34]

MLP [35], ANN [38,39]
Two stage identification
with machine learning 
and image processing 

[36,37]

Solves the problem of 
crack localization

Inherits the complexity of 
appropriate parameter
selection while localizing 
the cracks

Deep Learning (Image 
Classifcation)

AlexNet [43-45]
1. Achieves astounding 
performance for crack image
identification.
2. Minimally effected by 
background noise

Subject to parameter 
degradation problem. 
As a result, acheives a 
high error rateGoogleNet [46]

ResNet [3, 41, 42] Alleviate the parameter 
degradation problem Computationally expensive

Shallow CNN [1, 2, 50] Computionally inexpensive
method

All of these methods 
require an image 
processing based 
localization technique

Deep Learning 
( Encoder-decoder)

ConvNet [59,60]
Acheived significant accuracy 
over image classification
based mehod 

The fully connected layers 
are computationally expensive. 
Moreover, multiple convolution 
operation is responsible
for parameter degradation

FPCNet [61] Improved crack detection 
accuracy using multiple 
convolution and fully 
connected layerDeepCrack [4, 66]

DenseCrack [63]
A high precision result was 
acheived using feature fusion 
in clean images

Feature fusion can bring 
back false positives for 
complex background 
images

Surf based CNN [62] Useful for crack quantification
in different orientation.

Surf is very slow feature 
extractor for real time 
applications

InspectionNet [54]
Performed crack identification 
and quantification 
using SLAM Subject to parameter 

degradation problem
SegNet [5,6] Alleviated the computational

complexity of ConvNet

SDDNet [55]

1. Uses a large field of view for
crack feature extraction. 
2. Identifies crack in very 
complex background

1. Computationally expensive
2. Very high processing
time
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The aforementioned CNN architectures consider crack identification as an image

classification problem. Although these techniques are highly efficient for crack fea-

ture extraction, they need to utilize image processing algorithms for identifying the

exact location of crack [2, 3]. The image processing technique used for defect local-

ization suffers from the parameter selection problem. Moreover, the computational

complexity of deep networks stems in the gradient vanishing problem [42], resulting

in a significant performance drop.

Semantic segmentation architectures alleviate the problem of localizing and clas-

sifying concrete crack pixels at the same time. There exist several semantic seg-

mentation architectures for scene parsing, object instance segmentation, and many

other applications. Among them, FCN [51], Mask-RCNN [52], UNet [53] and Seg-

Net [6] have achieved significant performance in the field of segmentation. The object

instance segmentation applications widely employ Mask-RCNN architecture. Scene

segmentation and image restoration applications employ the SegNet, UNet, and FCN

architectures. These architectures learn important feature attributes of the regions

through a series of encoding and decoding operations. SegNet, UNet, and FCN

architectures are widely employed for scene segmentation and image regeneration ap-

plications. These architectures perform a series of encoding and decoding operations

for segmentation. The SegNet architecture outperformed UNet and FCN significantly

in terms of accuracy, computational complexity, and memory usage.

On the other hand, the ResNet [43] represented the property of extracting effi-

cient features in complex image classification applications. ResNet architecture can

be employed as an encoder-decoder manner for segmentation purposes. This ap-

proach involves a huge number of parameters, which results in the gradient vanishing

problem. Apart from this, the fully connected layer used in ResNet, Mask-RCNN,

UNet, FCN architectures increase the computational complexity. The decoder net-
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work introduced by the SegNet architecture eliminates the need for using the compu-

tationally expensive fully connected layers. Furthermore, excessive computations can

lose important crack feature attributes in deeper layers (through max-pooling). The

effectiveness of the aforementioned architectures is greatly hampered in that case.

To alleviate the aforementioned problem of crack segmentation, a very few encoder-

decoder architectures were proposed in [4, 5, 54–63]. These architectures represented

more precise and robust performance than the state-of-the-art semantic segmentation

networks.

The classification-based CNN architectures for concrete crack identification clas-

sifies a sub-block of an image as crack or non-crack. For example, the network ar-

chitectures proposed by [2, 3, 49] divide a large image into smaller sub-blocks of size

256 × 256. Each of these sub-blocks is a combination of 65536 crack and non-crack

pixels. If a crack block contains only 100 crack pixels, the remaining pixels are falsely

classified (empirical evidence is shown in chapter 4). Although the false classifica-

tion rate was alleviated with architectures based on encoder-decoder models proposed

by [4, 5, 54–58], these methods significantly suffer from gradient vanishing problem.

Additionally, these methods are highly sensitive to environmental non-uniformity.

The proposed architecture in this thesis significantly reduces the false classification

rate of image classification methods as well as alleviates the drawbacks of encoder-

decoder based architectures. In the following chapters, we elaborately discuss the

proposed architecture and provide a comparative analysis of different existing archi-

tecture for crack detection.

There are certain drawbacks of encoder-decoder architectures (both crack detec-

tion and semantic segmentation) that impede crack detection performance. First,

the computations performed by these architectures are twice of a regular CNN ar-

chitecture. These sheer amount of computations enhances the network’s sensitivity
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to gradient vanishing problem as well as environmental non-uniformity. Extracting

discernible feature sets from a highly imbalanced crack detection data-set is a chal-

lenging task. Therefore, in this thesis, we proposed a CNN architecture addressing

the aforementioned drawbacks of existing literature. A summary of different methods

employed for crack detection and their drawbacks are shown in table 1.1. An extensive

analysis and survey of different methods in crack detection is reported in [64].

1.2 Contributions

The main contributions of this thesis are represented as follows:

• In this thesis, we propose an efficient framework for class imbalanced data-sets

such as crack detection. The proposed framework incorporates an encoder-

decoder network architecture for reducing the effect of gradient vanishing prob-

lem. The network architecture (referred to as ANet-FSM) is elaborately dis-

cussed in chapter 3. Additionally, our investigation reveals that using this spe-

cific type of architecture is effective in applications suffering from high degrees

of class imbalance –crack identification (non-crack pixels are much more than

crack pixels). Empirical evidence supporting the propositions in this work is

represented in chapter 4.

• The second main contribution of this study is the incorporation of a feature

silencing module (FSM). The FSM module alleviates the sensitivity of the deep

architectures toward feature maps that do not contribute effectively to the opti-

mization of the network loss. The incorporation of the FSM with the proposed

CNN architecture significantly reduced the false classification rate of the con-

crete crack detection process. We have explained the functionality of the FSM
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elaborately in chapter 3. The efficiency of the FSM on concrete crack identifi-

cation data-set is represented in chapter 4.

1.3 Thesis Organization

The thesis is organized as follows: In chapter 2, a different type of CNN architectures

for crack detection are discussed. The proposed crack detection framework and its

functionality are discussed in chapter 3. This is followed by the elaborate discussion

of experimental results, data-set preparation in chapter 4. Lastly, the conclusion of

this thesis is drawn in chapter 5.
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Chapter 2

Background

2.1 Convolutional Neural Network Architecture

CNN [40] architectures are a composition of various connected layers such as in-

put, convolution, pooling, activation, and output layers. Some auxiliary layers such

as batch normalization and drop out layer are also associated according to appli-

cation purpose. This arrangement of various layers and their functionality extracts

discernible feature sets for each object on CNN. Among all the layers of CNN, the

convolutional layer is primarily responsible for the salient feature extraction of a spe-

cific object. Each convolutional layer performs multiple convolution operations using

receptive fields (kernels) of fixed size and variable weights. A unique feature set is

generated as an outcome of each convolution operation. The feature maps are gen-

erated by all the different weighted kernels from a feature space. The feature space

generated by a convolutional layer represents complex non-linear relationships among

the input set and output label. To obtain a linear mapping from these non-linear

relationships, an activation function is used at the end of the convolutional layers.
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Moreover, the output feature space of a convolutional layer is sensitive to a specific

feature position. As a result, a down-sampling operation (known as pooling) is per-

formed after each convolutional layer to obtain a position invariant feature space.

The pooling operations preserve strong feature responses and eliminates the weak

ones using a fixed pooling window size. CNN architectures generate a robust and

position invariant feature space through several convolution and pooling operations.

A soft-max layer is added at the end of the CNN to assign a normalized probabilistic

distribution to the feature responses.

2.2 Image Classification based Architecture

The earlier research of crack identification frameworks classified individual images as

crack or non-crack. There have been an extensive amount of research in recent past for

crack image classification. Among them, the CNN architectures proposed by [1,3], and

[2] achieved significant performance gain over state-of-the-art architectures. These

image classification methods divide an input image into multiple small sub-blocks.

After that, each sub-block is identified by a CNN module as crack or non-crack. The

workflow of a crack image classification architecture using ResNet is represented in

figure 2.1.

2.2.1 CNN architecture proposed by [2]

The authors of [2] proposed a shallow CNN architecture for crack image classification.

They used image processing based localization technique for identifying the crack

location. The CNN architecture consists of four convolutional layers, followed by a

batch normalization layer and ReLu activation. A max-pooling operation is used at

the end of each convolution layer. The convolution layer uses spatial filters of size
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Figure 2.1: The workflow of crack block detection using the framework proposed
by [1]

3,24,48 and 96 of size 3 respectively. The weight of these filters is initialized randomly

at the start of the training operation. The max-pooling operation downsamples the

feature space into a smaller dimension using a 2 × 2 window with stride 2. A fully

connected layer, followed by a soft-max layer is incorporated at the end of the network.

2.2.2 CNN architecture proposed by [3]

The authors of [3] employed a genetic algorithm to identify the parameters of a pre-

defined CNN. The estimated parameters involve convolution kernel size, number of

filters and number of convolution layers. Through the evolution process, the genetic

algorithm finds the best network architecture for a certain type of data-set. The

network parameters are represented as a 14-bit chromosome. For each chromosome,

a network is constructed and trained on the crack data-set. The fitness function of

the genetic algorithm calculates the accuracy of the network after training.



13

2.2.3 Crack Detection using Residual Network Architecture

(ResNet) [1]

The ResNet architecture consists of a fifty layer deep network with residual learning

function. The input layer takes an image of a size of 256× 256× 3. Those represent

the height, width, and number of channels of the image. The input image is passed

through a 7 × 7 convolutional layer, which outputs a 112 × 112 feature space. A

3×3 max-pooling is performed on the feature space which results in a 52×52 output

feature space. The residual function is performed on each three-layer stack consisting

of 1× 1, 3× 3, and 1× 1 filters. Later, a global average pooling is performed on the

network, followed by a 1× 1 softmax activation in the fully connected layer.

When extra layers are added to construct a very deep network, it is more efficient

to map these layers into a residual function, rather than mapping the added layers to

the underlying mapping of the network. Let us assume that the underlying mapping

of an added layer is H(x) where x is the input of the first layer. The residual mapping

of the added layers would be F (x) : H(x)−x. Using the equation F (x)+x, a shortcut

connection can be added to after several stacked layers, consisting of existing layers

and added new layers. This residual learning function is applied to every few stacked

layers. Initially, Resnet uses a 32 layer architecture and is applying residual learning

in every two layers with 3 × 3 filters. However, in Resnet with 50 layers a building

block is designed with applying a residual function in every three layers. The stacked

layers consist of filters with 1× 1, 3× 3, 1× 1 dimensions, respectively. The ResNet

architecture is shown in table 2.1.
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Table 2.1: The ResNet architecture

2.3 Encoder Decoder Architecture

Convolutional neural networks have achieved significant performance in applications

ranging from object recognition to gesture and pose recognition. In addition to clas-

sification and recognition, semantic segmentation and image reconstruction appli-

cations employ encoder-decoder based CNN architectures (SegNet [6], UNet [53],

FCN [51]). These architectures encode the feature space into a lower dimension

through a series of encoders. This feature space is decoded into a higher dimension

through corresponding decoders. Salient feature attributes of each pixel of an input

data set are learned through these encoding and decoding operations.

For crack identification purpose a number of different encoder-decoder based archi-
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tectures were proposed recently such as InspectionNet [54], DeepCrack [4], SDDNet

[55] and SegNet-SO [5]. An example of a traditional encoder-decoder architecture

(SegNet-SO [5]) is represented in figure 2.2.

The SegNet-SO [5] architecture represented in figure 2.2 is composed of five en-

coders and decoders. Each encoder combines n number of convoultion layers. Two

auxiliary layers ReLu and Batch Normalization is employed at the end of the encoder

layers. Lastly a max-pooling operation is performed to down-sample the feature space

for the next encoding operation. The value of n is set to 3 for the first two encoders.

The rest of the encoders set the value of n is to 2.

The decoder layers up-sample an input feature space to its original dimension. The

up-sampled feature space passes through the same number of convolution operations

as their corresponding encoders. The up-sampling operation was performed using

a transposed convolution operation in [5]. The learn-able parameters in transposed

convolution enables the network to have more information about the feature space.

Some feature information is lost during the max-pooling operation. This infor-

mation loss is not trivial for semantic segmentation applications. Nonetheless, this

information loss effects the performance of deep network for highly class-imbalance

data-sets such as crack data-set. Therefore, a side-output function [65] was employed

with each encoder to accumulate for the feature loss. The output feature map of

each encoder is up-sampled to original dimension through this operation.The up-

sampling operation is performed typically using transposed convolution or bi-linear

up-sampling [5]. The up-sampled feature maps from each encoder layers are concate-

nated together with the output of the final layer. A point-wise convolution layer is

used at the end to accumulate all the feature maps to the desired number of classes.
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Figure 2.2: An encoder-decoder based crack detection architecture proposed by [5]

2.4 Drawbacks of Encoder-decoder architectures

Although the encoder-decoder architectures represent promising results on crack clas-

sification, they have some drawbacks. Firstly, these architectures extract crack feature

attributes using multiple 3×3 convolution operation. Multiple convolution operations

of small receptive field extract both global and local feature attributes of the input
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image as reported in [47]. While going through multiple convolution operations in

deeper layers, the gradient stability of a network is lost. The network stops updating

the weights of these parameters, which results in the wrong classification of crack

pixels. As a result, the network attains a very high loss value. An example of this

phenomenon is represented in figure 2.3. In this figure, the loss of two network ar-

chitectures involving two different convolution operation (3× 3 and 7× 7) is plotted.

We have extracted a 20 epoch window from training for better visualization of the

loss. It is evident from the figure that, for multiple 3 × 3 convolution operation the

loss is not stable between any two epochs. The loss doesn’t change gradually for this

convolution operation. For example, the loss in epoch N + 1 jumps to a higher loss

in comparison to the loss in epoch N . This phenomenon is visible through the entire

20 epoch window and represents the high gradient instability of this network. On the

other hand, for the network with 7 × 7 kernel size, the loss changes gradually. This

represents the stable gradients of the network.

The loss value of both the network in figure 2.3 lies within µ± std, where µ is the

mean value of the loss in current epoch window and std is the standard deviation. For

the network using 3 × 3 convolution kernel the loss lies within 0.002 ± 0.012, where

µ = 0.02 and std = 0.012. The maximum and minimum loss value of this network are

0.05 and 0.002 respectively. On the other hand for the network with 7×7 convolution

kernel the loss lies within 0.006 ± 0.0007, where µ = 0.0006 and std = 0.0007. The

maximum and minimum loss of this network are 0.0072 and 0.005 respectively. These

statistics represent that the loss generalization of a single large convolution kernel

(e.g., (7 × 7)) is better than multiple small kernels (e.g., multiple 3 × 3 kernel).

The loss value of the network with multiple small convolution kernels is seven times

(approximately) higher than the network with a large convolution kernel. Due to

gradient instability, the network didn’t update many parameter weights, resulting
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Figure 2.3: Training loss of two different type convolution networks. The training
loss was extracted from a 20 epoch window while training. N depicts the start of the
window and the loss was plotted for each epoch. Training loss of convolution network
with two different kernel size (3× 3 and 7× 7) are plotted.

in a very high loss value of 0.05. Furthermore, the high standard deviation also

represented the highly unstable gradient values or the gradient vanishing problem.

Secondly, the concrete defect identification data sets vary significantly from state-

of-the-art image classification databases because crack pixels show anomalous behav-

ior (aberrant patterns and shapes) in comparison to healthy concrete pixels. Addition-

ally, these anomalous pixels appear only in a small portion (2− 10% approximately)

of a concrete image (known as class imbalance problem). Therefore, the relationship

between crack and non-crack pixels can be extracted more efficiently if the convo-

lution operation is performed concerning a large neighborhood. An example of the

aforementioned phenomenon is represented in figure 2.4. The image in this figure is

extracted from the Crack260 [66] Data-Set. The enlarged neighborhood of a crack
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Figure 2.4: The comparison of two neighborhood of crack location from a small
neighborhood and large neighborhood. Since crack pixels occur a very small amount
of time, the small neighborhood only contains crack pixels. On the other hand, in the
large neighborhood, the statistical relationship between crack and non-crack pixels
can be captured more appropriately

location is shown in this figure 2.4. It is evident that, with the small spatial neigh-

borhood, we can extract the properties of crack only. Though the global and local

features can be extracted using multiple spatial neighborhoods, it is crucial to extract

the anomalous relationship between crack and non-crack pixels. This relationship can

be extracted using a relatively large neighborhood [55].

For concrete crack classification, the deep crack [4] network architecture achieved

a significant performance using multiple receptive fields of size 3× 3. This approach

has the advantage of extracting efficient local and global features of crack pixels. As

discussed earlier in figure 2.3, the gradient vanishing problem is very prominent in

these types of approaches. To address this issue another deep architecture was devel-
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oped for crack detection namely SDDNet [55]. This architecture uses a combination

of different convolution operations such as DenseSep, atrous and pointwise convolu-

tion. They used a large receptive field for extracting the crack and non-crack pixel

relationship. In this thesis, we proposed a crack detection framework with only one

type of convolution operation. We used a 7× 7 convolution kernel with only one con-

volution layer in each encoding operation. The large receptive field is very crucial for

extracting the imbalanced relationship between crack and non-crack pixels as shown

in figure 2.4.
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Chapter 3

Methodology

The proposed ANet-FSM architecture is comprised of an encoder-decoder module, a

feature silencing module (FSM), and a concatenation module. An overview of the

whole architecture is shown in figure 3.1. Important crack feature attributes are

learned through the encoding and decoding operation.

The FSM eliminates weak feature maps generated from the encoder module and

passes the strong feature maps to the concatenation module. The concatenation

module up-samples and merges these feature maps together. The up-sampled feature

maps along with the output feature map of the decoder module are passed to a 1× 1

convolution and soft-max layer. The encoder module in figure 3.2 is composed of five

encoder layers.

Each encoder layer assembles a convolutional layer and a max-pooling layer. Two

auxiliary layers (Batch Normalization and ReLU) are added at the end of each con-

volutional layer. The convolution layers in each encoder use 4, 8, 16, 32 and 64 kernels

of size 7×7, respectively. The max-pooling operation down-samples the feature space

using a 2× 2 pooling window. Additionally, this operation saves the pooling indices

in memory to be used in the up-sampling operation in the decoder module.
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Figure 3.1: The proposed network architecture overview.

Figure 3.2: Encoder and Decoder Module of ANet-FSM architecture. Each encoder
performs a 7×7 convolution and max-pooling operation. The decoders up-sample this
low dimensional feature space into upper dimension using bi-linear interpolation. The
feature space decoding is performed by the convolution operation in each decoder.

A representation of the decoder layers for each corresponding encoder is repre-

sented in figure 3.2. Each decoder layer performs a bi-linear up-sampling operation

on its input feature space using the pooling indices saved during max-pooling opera-

tion. A convolutional layer is employed at the end of each up-sampling operation to

decode the feature space of its corresponding encoder.

A spatial neighborhood of size 7×7 is used for each convolution operation through-

out the encoding and decoding operation. As discussed earlier, this neighborhood is



23

also efficient for eliminating the gradient vanishing problem of state-of-the-art crack

detection and semantic segmentation architectures. Therefore, each encoder layer in

this architecture is comprised of only one convolutional layer.

Figure 3.3: An example of a feature space of different crack images during an en-
coding operation. The weak feature responses generate a weight matrix close to zero
(approximately). This feature maps are eliminated using equation 3.1

Figure 3.4: FSM of the proposed architecture: the silenced feature maps are repre-
sented with black colors.

On the other hand, the max-pooling operation eliminates some feature responses in

the course of generating position invariant feature space. This feature loss is nominal

when enough instances of different classes are present. The concrete defect data-
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sets are highly imbalanced due to the low occurrence of defected pixels. Removal

of these feature responses significantly affects the performance of the network. A

transient solution to this problem is to up-sample the feature spaces into the original

dimension after each encoding operation [5].

Empirical analysis performed on the feature spaces after each encoding operation

reveals that all the features in the feature space do not contribute equally to the crack

pixel identification. An example of a feature space extracted after a single encoding

operation is shown in figure 3.3. It is evident from the figure, the feature maps in

figure 3.3(1-3)(a), (b), (c), (f), (h) represent very strong crack features. These fea-

ture maps contribute significantly to final crack pixel identification. The remaining

feature maps in figure 3.3(1-2)(d), (e), and (3)(g) are responsible for overlapping the

salience property of the feature space Moreover, the weight matrix of these feature

space contains gradient values close to zero, which results in false classification. To

enhance the precision of crack classification, the FSM module in ANet-FSM archi-

tecture eliminates these feature maps from the network feature space. A graphical

representation of the FSM module is shown in figure 3.4.

The FSM module in figure 3.4 uses equation 3.1 for extracting significantly con-

tributing feature maps from each encoder feature space. Equation 3.1 is defined as

follows:

Fp =
i=1→N⋃
fi∈F

fi ≤ th

Fs = F \ Fp

(3.1)

where Fp is the pruned feature space, F is a feature space from an encoder, fi is the

ith feature map in F , th is a threshold value, Fs is the selected features for passing to

the concatenation module and N is the number of feature maps in feature space F .

The encoding operation generates some significantly contributing feature maps for

crack detection. Using equation 3.1, we extract these feature maps for up-sampling.
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The rest of the feature maps are considered weak by this equation. As a result of

gradient vanishing, these feature maps have values close to zero. Hence, in equation

3.1, we select the feature maps for pruning (Fp) having values less than a threshold

th. A new feature space Fs is formed by eliminating the feature spaces in Fp from

the original feature map F .

The decoder layer in ANet-FSM uses the pooling indices from the max-pooling op-

eration of the corresponding encoder for performing up-sampling (introduced by [6]).

The decoding operations are directly dependant on the feature space of the corre-

sponding encoders. Propagating the pruned feature space from one encoder layer to

another encoder layer effects the pixel connectivity of the cracks as well as the pre-

cision of the network. The feature spaces in encoder and decoder propagate without

any pruning operation. Additionally, the pruned feature space (Fs) is passed to the

concatenation module shown in 3.1. This concatenation module performs bi-linear

up-sampling on the pruned feature space from each encoder (except the first encoder).

These up-sampled pruned feature spaces are concatenated with the feature space of

the final decoder. Since the crack classification is a one-class classification problem,

we use a 1× 1 convolution operation at the end of the concatenation operation. This

convolution operation helps to estimate the crack location from the concatenated

feature space.

An example of eliminated feature maps from an instance of the Illinois Bridge

Data-set is represented in table 3.1. To represent the effectiveness of the FSM module

in reducing the complexity of a network, we have introduced three measures such as

feature silencing rate (FSR), feature space size before pruning (FSSb) and feature

space size after pruning FSSa. Since there is a scarcity of standardization metrics of

feature space pruning, we have incorporated the above three measures for evaluation
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only. The FSR in table 3.1 is defined in equation 3.2.

FSR =
Bs − As

Bs

(3.2)

where Bs represents the number of features before silencing and As represents the

number of features after silencing. Additionally, we have analyzed the feature space

size before and after silencing using equation 3.3.

FSSb = x× y ×Bs

FSSa = x× y × As

(3.3)

where x is height of an image, y is width of an image, FSSb is the the feature space

size before silencing and FSSa is the feature space size after silencing. In table 3.1, we

have calculated the value of equation 3.3 for a 256× 256 image. Since, each encoder

operation reduces the image size to half, the value of x and y is reduced to half.

Therefore, image size is (256, 256), (128, 128), (64, 64), (32, 32), (16, 16) for Encoder1,

Encoder2, Encoder3, Encoder4 and Encoder5 respectively in table 3.1.

Considering the low number of feature maps generated by the Encoder1, the FSM

module does not eliminate feature maps from the feature space generated by this

encoder. The feature space from Encoder2 and Encoder3 was reduced to half of

their original size. Encoder4 eliminates more than half of the feature maps from fea-

ture space. In total, the FSM eliminates 49% of the feature maps generated from the

encoder module. Additionally, FSSa value significantly reduces after silencing for En-

coder2, Encoder3, and Encoder4. This represents the effectiveness of the FSM module

in reducing the cost of the network. Therefore, we can infer from this phenomenon

that almost half of the computations in encoder-decoder based architecture, does not

contribute significantly to the prediction. Elimination of such features improve the
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Table 3.1: FSM from an instance of the Illinois Bridge Data-set: the numbers in
FSM represent the ith eliminated feature. The intial (x, y) = (256, 256) for FSSa

and FSSb. Once the image is passed through multiple encoders, the image size is
reduced to half of the original. The (x, y) value for Encoder2, Encoder3, Encoder4
and Encoder5 are (128, 128), (64, 64), (32, 32) and (16, 16).

Encoder Number Features Silencing Rate, FSR Feature Space Size for 256x256 image No. of Features, Fs Silenced Feature Set by FSM

Before Silencing, FSSb After Silencing, FSSa Before Silencing, Bs After Silencing, As
Encoder1 0.0% 262,144 262,144 4 0 ⧫
Encoder2 50.0% 131,072 65,536 8 4 ⤄
Encoder3 43.8% 65,536 36,864 16 9 ↣

Encoder4 50.0% 32,768 16,384 32 16 ⥌
Encoder5 53.1% 16,384 7,680 64 30 ⤮

Encoder Module 49.0% 124 59

⧫ = {}

⤄ =  {1,4,6,7}
↣ = {1,2,4,5,7,9,12} 

⥌= {2,5,6,8,9,10,11,12,13,18,20,21,22, 24,26,29} 

⤮ = {1,5,8,11,12,15,17,19,25,26,28-32, 38-44,47-49, 52, 53, 55,56,60, 61-63}

performance as well as reduces the computations of the network remarkably.
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Chapter 4

Experiment Results

In this chapter, the results of different CNN architectures on concrete crack identifi-

cation are compared with the proposed architecture. At first the data-set preparation

and augmentation methods are elaborated in section 4.1. Then the experimental set-

up for both crack image classification and encoder-decoder architecture is elaborated.

Lastly, the results of the proposed architecture are compared with both crack image

classification based architecture and encoder-decoder based architecture.

4.1 Data-set Preparation

The experiments in this thesis were performed for both crack image classification and

segmentation networks. Since these two types of network require a different type of

data-set, we prepared two different data-sets for each type of network. The data-set

preparation method is elaborated in the following.
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4.1.1 Data-set for crack image classification

The data-set for crack image classification was collected using NDE sensor fusion

method represented by [3] from various bridge decks and roads. Furthermore, several

published crack images from arbitrary online resources were included in the data-set.

This images were divided into 256 × 256 sub-blocks. Each sub-block was labeled

manually into crack and non-crack classes. The data-augmentation operation was

performed on this data-set using horizontal or vertical flipping, rotation (left or right)

in 90 degree angles. Furthermore, intensity correction operation was performed on

the images to incorporate low-contrast images. For this purpose, we have employed

the equation, I = I ∗ α + β , where I is an image pixel, α is set to 1, and β is set to

-80. Two different data-sets were created from the original images such as training

and validation. The training set includes 21996 images of 256 × 256 × 3 dimensions

in the crack class, and 22000 images in the non-crack class. On the other hand, the

validation data-set consists of 300 images of crack and non-crack classes. The image

classification architectures were tested on 326 images of crack class and 301 images

of non-crack class.

4.1.2 Data-set for encoder-decoder architecture

The scarcity of a well-balanced data-set is a challenge for anomalous pixel identifica-

tion applications such as concrete crack classification. Since the occurrence of crack

pixels is much lower than healthy concrete pixels, it is essential to train a deep net-

work architecture with an enormous amount of data instances containing crack pixels.

Therefore, we have collected concrete images of different highway bridge decks from

different parts of the USA using our previously developed nondestructive evaluation

robots [3,14,67] at the Advanced Robotics and Automation Laboratory. We captured

images in various light illumination and different times of day and night to incorporate
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the non-uniformity of the environment as much as possible in our data-set (referred

to as Illinois Bridge data-set). The data-set contains 46 images, where each image

has a resolution of 5000× 3000.

(a) (b)

Figure 4.1: (a) Sample crack image and (b) annotated image from the Illinois Bridge
data-set.

Appropriate annotation of the images in the data-set is very important for training

and validating CNNs. This annotation process is arduous due to the difficulty involved

in finding the crack pixels in an image (considering their low occurrence). As a result,

the pixels were color-coded for each image individually from the Illinois Bridge data-

set. The crack pixels were assigned a white color and the healthy concrete pixels

were assigned a black color. An example of our annotated image data-set is shown in

figure 4.1.

There exists a number of published data-sets such as Crack260 [66], CrackForest

[68] . These data-sets consist of very low resolution images (256 × 256, 512 × 512)

in comparison to Illinois Bridge data-set. Additionally, the Illinois Bridge data-set

consists of images with several types of noise such as vegetation, road paint, oil

spilling, and many more. An example of the annotated data set is shown in figure

4.1(a).

The crack inspection data-sets represents high-class imbalance property. To ex-

tract appropriate crack features, it is essential to provide the network with enough
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Figure 4.2: The training procedure with data augmentation technique for encoder-
decoder based crack identification.

instances of crack samples. Therefore, we employed a data augmentation technique

proposed by [5] for this purpose on our original data-set.

The data augmentation technique randomly selects an image from the original

data-set (training or validation). A random sub-sample of the selected image is chosen

for the data-augmentation operation. This operation is chosen randomly for each

individual sub-samples. The data-augmentation operations used in this work are



32

horizontal flipping, vertical flipping, and gamma correction of intensity. The gamma

value is also chosen randomly for intensity correction. This process is repeated for

N times, where N represents the size of the data-set. As a result, this technique

can generate N sub-samples of augmented data-set from the original high-resolution

data-set. A graphical representation of the data augmentation technique is shown in

figure 4.2.

4.2 Experimental Setup

The experiments of this thesis are carried on the different types of CNN architectures.

An empirical analysis of different crack image classification networks was performed.

Then, a comparison of encoder-decoder architecture and image-classification based

architecture is performed. Lastly, the proposed architecture is compared with state-

of-the-art encoder-decoder architectures in literature. Since the experiments involve

two different types of CNN architecture, the experimental setup is different for them.

Therefore, the experimental setup is discussed in two sub-sections for crack image

classification and encoder-decoder network architecture.

4.2.1 Experimental Setup for Crack Image Classification

Three crack image classification network architecture was employed in this thesis (

[2], [3] and ResNet-50 [41]). The network parameters were optimized using Stochastic

gradient descent (SGD) with a learning rate of 0.01. The networks were trained with

80 epochs, where weights were updated in each epoch. The initial weights were

assigned randomly, rather than using transfer learning from ImageNet data-set.

A real-time image of road or bridge deck surface can contain multiple crack types

of different orientations. There may be sub-parts of an image where non-cracks exist.
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To identify different patches of an image as a crack and non-crack, it is effective to

subdivide an image. Therefore, an image of arbitrary size is taken as input, and the

image is then divided into sub-images of 256 × 256 × 3 dimensions (height, width,

channel). The images are then fed one by one into the CNN. After that, the images

are stitched back together after classifying as crack or non-crack.

4.2.2 Experimental Setup for Encoder Decoder Architecture

The encoder-decoder architectures in this thesis were trained on a 1080 Gtx GPU

with 10 Gb memory. For hyper-parameter optimization, Adam optimizer was used

with a learning rate of 0.0001.

The proposed deep network architecture was pre-trained on the Illinois Bridge

data-set for 300 epochs. Many state-of-the-art CNN network training involves transfer

learning from existing networks such as VGG-16 [47]. This transfer learning from the

existing network has several disadvantages in our case. Firstly, transfer learning

from state-of-the-art image processing data-sets (ImageNet) will give the network

unnecessary information on various objects. Since crack pixels have a very small

amount of occurrence in an image, the transfer learning process may overlap the

features of crack. Secondly, the ANet-FSM architecture prunes feature space weights

below a threshold (equation 3.1). Transferring weights from another module (or

network) initialize the feature space with high weights. As a result, the FSM module

cannot find the weak feature maps for pruning. For the aforementioned reasons, the

network was pre-trained on the Illinois Bridge data-set instead of performing transfer

learning.

The ANet-FSM network was trained for 300 epochs. At each epoch, data-sets for

training and validation are generated using the previously discussed data augmenta-

tion technique from the respective original training and validation data-set. In figure
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4.2, we represented the process of data-augmentation and training visually. Each

image of the training and validation data-set generated by the data-augmentation

technique has a resolution of 512×512. The training data-set consists of 5000 images

and the validation data-set consists of 1000 images. As a result, a data-set of 6000

images is generated in each epoch in training. In total, the network is trained and

validated on 300 different data-sets respectively.

State-of-the-art data augmentation techniques generate augmented data-set from

a handful of low-resolution images for crack detection. As a result, training is per-

formed on the same data-set for each epoch. This type of training procedure is highly

susceptible to overfitting problems. Nonetheless, the data-augmentation technique

and training process incorporated in this thesis generates different training and vali-

dation data-set for each epoch at the time of training. As a result, the network sees

a range of different types of images. The overfitting problem of traditional training

procedures can be alleviated through this training procedure.

We evaluate the performance of the pre-trained network using the test data-set of

200 images. The testing image size (1024× 1024) was selected to be larger than the

training image size (512×512) to represent the robustness of the network towards noise

in large resolution images. Apart from this, the computational complexity involved

with large images generates the gradient vanishing problem in a CNN architecture.

The effect of the gradient vanishing problem is more evident in large scale images.

Therefore, the resolution of test data-set images is twice larger than the train data-set.

The performance of ANet-FSM architecture was compared with two different type

of encoder-decoder architectures such as semantic segmentation and crack image de-

tection architecture. The semantic segmentation architectures such as SegNet suffer

from gradient vanishing problem as discussed in chapter 2. The effect of this prob-

lem is strongly evident in class-imbalanced data-sets (crack detection data-set). This
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effect was evaluated by comparing with semantic segmentation architecture (Seg-

Net [6]). Moreover, several crack segmentation architectures were employed for per-

formance comparison such as InspectionNet [54], SegNet-SO [5], Deep crack [4] and

SDDNet [55].

4.3 Result Analysis

In this thesis, we evaluate the results of the proposed network architecture on three

different criteria such as qualitative analysis, qualitative measurement and network

complexity analysis.

4.3.1 Qualitative Comparisons

The qualitative comparison of several crack identification networks is performed in

this section. At first, the CNN architectures for crack image classification are com-

pared. Then, the result of the best crack image classification architecture is compared

with encoder-decoder architecture. After that the results of proposed ANet-FSM ar-

chitecture are compared with block detection architecture in figure 4.3. Finally, the

results are compared with the state-of-the-art encoder-decoder architectures such as

SegNet [6], SegNet-SO [5] and InspectionNet [54]. We color-coded the true positive

pixels (correctly detected crack pixels) with red, false positives (missed crack pixels)

with blue, and false negatives (pixels incorrectly labeled as crack) with green, respec-

tively. The true negative pixels (correctly labeled non-crack) are represented with

their original texture.
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Comparison of CNN Architectures for Crack Image Classification

We have compared the results of three different CNN architectures for crack image

classification such as [2,3] and ResNet-50. The results of this architectures are shown

in table 4.1.

Table 4.1: Crack detection result on several images using three different processes.
The correct or false classification is identified by how many 256 × 256 blocks are
classified as crack class.

The residual learning network in table 4.1 achieved 94% accuracy after testing

on a test set of 627 images of crack and non-crack classes. The CNN architecture

proposed by [2] and [3] achieved 89.8% and 96 % accuracy respectively (trained with

same data set). Besides, six images of 3486× 5184× 3 dimensions were taken and fed

into the system. The results show that the Resnet model can identify cracks more

accurately than [2] and classifies less false positives than the CNN model by [3]. Table

4.1 shows some examples of the crack detection result of Resnet model, CNN model

by [3] and [2]. Though the CNN model by [3] detects more crack pixels, it detects

more false positives, in comparison to the ResNet model [1]. In some cases, the Resnet

model detects more crack pixels as shown in Image1 of Table 2 than the other two

CNN structures. Some cases show that the Resnet detects fewer crack pixels than the
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CNN model by [3]. However, Resnet outperforms the CNN model by [2] in all cases.

Comparison of Encoder-Decoder and Image Classification Architecture

Figure 4.3: Comparison of image classification architectures with encoder-decoder
architecture on three sample images. Columns are the tested images: (a) contains
clear vertical crack, (b) contains small crack on bottom, (c) contains a crack at
arbitrary orientation. Row 1- Original image; Row 2- Gibbs architecture [3]; Row
3- ANet-FSM architecture.

In figure 4.3, the comparative result of the image classification method, and our

proposed method are shown. Since the CNN model proposed by Gibbs [3], achieved

the highest accuracy in the previous section, we have compares the results of the

proposed architecture with this method. The Gibbs [3] architecture, divides an image

into smaller sub-blocks of size 256 × 256. Each block is identified as crack and non-

crack. The non-crack blocks are labeled as black in the image. The results of the
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proposed architecture on the same block are shown in figure 4.3, that the crack image

classification method identifies an extensive number of non-crack pixels as crack pixels.

Moreover, this architecture cannot localize crack pixels at all. On the other hand, the

proposed ANet-FSM architecture can classify and localize crack pixels at the same

time. For example, in image 2(a) Gibbs method falsely identifies four 256×256 blocks

as crack blocks. The ANet-FSM architecture in figure 3(a) represents the exact crack

location as well as misidentifies a very less number of crack pixels in comparison to

Gibbs architecture.

Comparison of Encoder-Decoder Architectures

We have represented the results of ANet-FSM architecture on three thresholding val-

ues such as high (15%), low(10%), and optimal (14%) in figure 4.4. If a low thresh-

old is applied, the network becomes more sensitive towards the environmental non-

uniformity and gradient vanishing problem. On the other hand, the network becomes

more specific to correct classification. As a result, the number of falsely identified

(blue colors) and correctly classified pixels (red colors) of the network significantly

increases (shown in row 2(a),(b),(c) of figure 4.4). When a high threshold is applied

(shown in row 3(a),(b),(c) of figure 4.4) the sensitivity towards noise is alleviated

but the specificity of correct classification also decreases. Application of an optimal

threshold not only reduces the false classification rate but also increases correct clas-

sifications significantly. This thresholding obtains a balance between specificity and

sensitivity as shown in figure 4.4.

The result of different encoder-decoder networks such as SegNet, SegNet-SO, and

InspectionNet, and the proposed ANet-FSM architecture is shown in figure 4.5.

The results of 2(a), (c), and (d) in figure 4.5 show that the SegNet architecture

has more falsely classified pixels (blue colored) than the remaining networks. The
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True	Positive False	Positive False	Negative

Figure 4.4: Comparison of different thresholds on the performance of ANet-FSM on
four sample images. Columns are the tested images: (a) contains clear horizontal
crack, (b) contains clear vertical crack, (c) contains a crack at arbitrary orientation,
(d) non-cracked concrete image. Row 1- Original image; Row 2- ANet-FSM (hi); Row
3- ANet-FSM (low); and Row 4- ANet-FSM (opt). Results will be seen clearer when
zoom-in.

excessive number of feature space (due to maximal network complexity), as well

as the vanishing gradients, contribute to this false classification. The SegNet-SO
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True	Positive False	Positive False	Negative

Figure 4.5: Comparison of different encoder-decoder based architectures on four sam-
ple images. Columns are the tested images: (a) contains non-cracked concrete image,
(b) contains clear horizontal crack on top, (c) contains clear vertical crack, (d) con-
tains non-crack concrete image. Row 1- Original image; Row 2- SegNet [6]; Row 3-
SegNet-SO [5]; Row 4- InspectionNet; Row 5- ANet-FSM architecture.

architecture in 3(b) moderately removes the false classification present in image 2(b).

The results in 3(a), (c), and (d) represent a considerable amount of falsely classified

pixels, specifically in 3(a) where no crack pixels are present originally. On the other
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hand, the InspectionNet architecture represented in image 4(a), (b), (c), and (d)

shows a performance improvement in comparison to SegNet and SegNet-SO. The

results in 4(a) and 4(d) are less affected by the FP rate than SegNet and SegNet-

SO. However, the false identification rate increases more than SegNet-SO architecture

when a significant number of crack pixels are present as shown in image 3(c). As a

result, it can be interpreted that InspectionNet is highly unstable as well as affected

by the environmental non-uniformity (lighting and shading). On the other hand, the

effect of FPs is significantly low in ANet-FSM architecture in comparison to the results

in row-2, row-3, and row-4. It has almost no false identification (blue pixels) in figure

5(a). There exists a small amount of falsely identified pixels in figure 5(d), which

is considerably lower than the previous networks. Moreover, this network alleviates

this false classification without affecting the correct classification rate (represented

as red pixels in 5(b) and (c)), which is the effect of feature silencing. The ANet-

FSM architecture not only improves the accuracy of crack identification but also

eliminates the effect of false identification significantly with the FSM. Therefore, it

can be concluded, ANet-FSM architecture is less affected by the gradient vanishing

problem in comparison to the encoder-decoder architectures in [5, 6, 54]. Based on

the percentage of correctly identified cracks pixels identified, it can be concluded

that ANet-FSM provides performance that is an improvement on the state-of-the-

art encoder-decoder network architectures designed for crack detection in the recent

past.

4.3.2 Quantitative Comparisons

This section presents the performance of different deep architectures in the literature

for concrete crack identification along with ANet-FSM architecture quantitatively.

Deep concrete crack detection architectures are categorized as image classification
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Table 4.2: Quantitative measures used for evaluating the results of deep network
architectures.

Measure Definition Description

True Positive TP Number of accurately identified crack pixels
False Positive FP Number of falsely classified crack pixels
True Negative TN Number of accurately classified non-crack pixels
False Negative FN Number of falsely classified non-crack pixels
Accuracy Acc (TP+TN)/(TP+TN+FP+FN)
Error rate Err (FP+FN)/(TP+TN+FP+FN)
Specificity Spc TN/(TN+FP)
Sensitivity Sens TP/(TP+FN)
Precision Precision TP/(TP+FP)
Recall Recall TP/(TP+FN)
F1 score F1 2 x (Precison x Recall)/(Precision+Recall)

Positive Class = Crack, Negative Class = Non-crack

based architectures (Gibbs [3]) and encoder-decoder based architectures (SegNet [6],

InspectionNet [54], SegNet-SO [5]). We evaluated the performance of these networks

using the test data-set of 200 images of size 1024× 1024.

Table 4.3: Overall Ranking of each method based on quantitative measures.

Method Rank TPRate FNRate TNRate FPRate Acc Err Spc Sens Prec Rec RI F1 Color Rank
Gibbs [2] 8.0 25.2 74.8 77.0 23.0 51.1% 48.9% 77.0% 25.2% 52.3% 50.7% 51.1% 51.5% 1st
SegNet [6] 6.5 71.9 28.1 98.9 1.1 85.4% 14.6% 98.9% 71.9% 98.5% 77.9% 85.4% 87.0% 2nd
SegNet-SO [5] 4.4 73.0 27.0 99.1 0.9 86.1% 14.0% 99.1% 73.0% 98.8% 78.6% 86.1% 87.5% 3rd
InspectionNet [54] 4.1 80.5 19.5 98.8 1.2 89.7% 10.4% 98.8% 80.5% 98.5% 83.5% 89.7% 90.4% 4th
ANet 4.0 75.1 24.9 99.0 1.0 87.1% 13.0% 99.0% 75.1% 98.7% 79.9% 87.1% 88.3% 5th
ANet-FSM (hi) 4.1 72.2 27.8 99.7 0.3 86.0% 14.1% 99.7% 72.2% 99.6% 78.2% 86.0% 87.6% 6th
ANet-FSM (low) 3.0 89.8 10.2 98.7 1.3 94.3% 5.8% 98.7% 89.8% 98.6% 90.6% 94.3% 94.4% 7th
ANet-FSM (opt) 2.0 86.6 13.4 99.2 0.8 92.9% 7.1% 99.2% 86.6% 99.1% 88.1% 92.9% 93.3% 8th

In this thesis, the state of the art statistical measures was applied to evaluate the

performance of Deep Network architectures. The statistical measures such as True

positive (TP) rate, False positive (FP) rate, True negative (TN) rate, False-negative

(FN) rate, Error rate, and Accuracy generate biased evaluation results toward non-

crack pixels because of crack pixels low appearance. The use of effective statistical

measures, such as Specificity, Sensitivity, Precision, Recall, and F-1 measure was

employed to distinguish between crack and non-crack pixels within imbalanced data-

sets. These statistical measures were identified by defining crack pixels as positive
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Table 4.4: Ranking of each method based on individual quantitative measures.

Method TPRate FPRate TNRate FNRate Acc Err Specificity Sensitivity Precision Recall F1-Measure 

Gibbs [2] 8 8 8 8 8 8 8 8 8 8 8
SegNet [6] 7 7 5 5 7 7 5 7 7 7 7
SegNet-SO [5] 5 5 3 3 5 5 3 5 3 5 6
InspectionNet [54] 3 3 6 6 3 3 6 3 6 3 3
ANet 4 4 4 4 4 4 4 4 4 4 4
ANet-FSM (hi) 6 6 1 1 6 6 1 6 1 6 5
ANet-FSM (low) 1 1 7 7 1 1 7 1 5 1 1
ANet-FSM (opt) 2 2 2 2 2 2 2 2 2 2 2

class and non-crack pixels as negative class. We define the TP rate as the percentage of

accurately identified crack pixels, whereas the TN rate is correctly identified non-crack

pixels. The FP rates are delineated as the percentage of wrongly identified crack pixels

and FNs are the incorrect identification percentage of non-crack pixels. We measure

how exactly a method can distinguish between the crack and non-crack pixels with

the Precision measure in an imbalanced data-set. We quantify the proportion of crack

pixels identified accurately by a network with a recall score. The sensitivity measure

evaluates the architecture’s responsiveness toward the aberrant behavior of defected

pixels. Specificity measure is used to quantify the behavior of non-crack pixels. The

overall performance of a network is evaluated using the F1 score. A summary of the

quantitative measures used in this work is shown in table 4.2. Apart from this, we

assigned a ranking to the architectures based on both dependent and independent

measures. We evaluated the results of the proposed ANet-FSM architecture with

three different thresholds. For applications in which high specificity and precision are

required, higher threshold values should be utilized–see ANet-FSM (hi) in table 4.4.

Lower thresholds would be effective in applications that require higher sensitivity

and recall score is needed–see ANet-FSM (low) in table 4.4. In addition to these

thresholds, we proposed the use of an optimal threshold, calculated using optimal

thresholding algorithms such as the Otsu’s method [69], when no preference is given

for performance measure with respect to the positive or the negative classes–see ANet-
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FSM (opt) in table 4.4. The overall results of different architecture and their average

ranking on all the measures are shown in table 4.3. In addition to this, each network

architecture is assigned ranking on individual measures on table 4.4, with 8 being the

least accurate. Due to the block-based analysis technique for crack detection, [3] was

ranked at 8, where lower rank corresponds to better performance of the algorithm

and vice versa. This architecture classifies a sub-image of size 256 × 256 as crack

or non-crack. Since crack pixels occur only a very small portion of an image, an

enormous amount of pixels are falsely classified in these blocks. As a result, the

false identification rate (both FP rate and FN rate), accuracy as well as the error

rate of the Gibbs network is the worst among all the networks. This also represents

the inefficiency of image classification methods in concrete crack identification and

anomaly detection. As expected, encoder-decoder architectures in table 4.3 and table

4.4, outperform classification networks such as the Gibbs architecture. Although

SegNet [6] outperformed all the previous architectures for semantic segmentation in

the field of scene parsing, the extremely imbalanced nature of concrete defect data-

set greatly drops the performance of this architecture. Additionally, the effect of the

gradient vanishing problem (the result of an excessive number of layers) is reflected in

evaluation measures such as FP and FN rates. The high false classification rate is also

responsible for non-contributing feature maps generated due to the textured nature of

the concrete surface (eliminated in ANet-FSM). Furthermore, the SegNet architecture

under-performs in all but three measures in table 4.3. For the aforementioned reasons,

SegNet architecture is not appropriate for solving the crack identification problem. As

a result, SegNet achieves a low overall and individual ranking in all of the evaluation

measures in table 4.4 and table 4.3. The gradient vanishing problem affecting the

SegNet was alleviated by up-sampling the feature space of each encoder layer in

Segnet-SO [5] architecture. This approach achieved more TP rate and less error rate
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than SegNet architecture. Although the InspectionNet architecture improves the TP

rate significantly, the highest FP rate in table 4.3 demonstrates the effect of gradient

vanishing problem. SegNet-SO architecture is more robust to the gradient vanishing

problem despite achieving a lower TP rate than InspectionNet. Therefore, it is worth

mentioning that, none of the architectures discussed above represent robustness in all

the measures.

The ANet-FSM architectures alleviate the drawbacks of SegNet, SegNet-SO, and

InspectionNet architectures by eliminating redundant computation. These computa-

tionally expensive methods represent a fluctuation in results. For example, Inspec-

tionNet obtains outstanding correct classification with the cost of an unacceptable

misclassification rate. SegNet-SO degrades the correct classification rate in the course

of reducing incorrect classification. To evaluate the stability of the ANet-FSM archi-

tecture, we have analyzed its performance without incorporating the FSM (referred

to as ANet). The robustness of ANet architecture is reflected by the ranking of 4

in each measure in 4.4. Although the InspectionNet architecture performs better in

positive classification (TP), the low negative classification rate (TN) represents the

unfeasible nature of this network towards imbalanced data-set. Therefore ANet ar-

chitecture is substantially stable (the effect of using 7×7 spatial neighborhood in the

convolution) despite achieving a lower ranking in some measures. However, the higher

false-positive rate of this network than InspectionNet represents that it is affected by

the vanishing gradient problem because of a 7× 7 kernel size. The association of the

FSM model significantly alleviates this problem as well as improves the performance

in all measures.

To further investigate the result of feature silencing we performed thresholding

operation on the result obtained from the ANet-FSM architecture. We discarded the

crack pixels having a lower probability than a specific threshold in this operation.
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Three different threshold values were set experimentally to perform this operation

such as high (15%), low (10%), and optimal (14%). It is evident from table 4.4

and 4.3 that ANet-FSM(low) architecture achieves highest performance in all but

four measures. Specifically, ANet-FSM (low) have recognized the highest number of

crack pixels among all the networks in table 4.4. However, the lowest TN and FP

rates represent this network’s bias toward only positive classification. Therefore, this

thresholding is suitable for application requiring to classify only crack locations. On

the other hand, when a higher threshold is applied to ANet-FSM architecture, the FP

rate significantly drops with the cost of a low TP rate. This thresholding technique is

appropriate for applications that need to know healthy concrete locations. An optimal

threshold was set experimentally to achieve a better TP rate and moderately lower FP

rate than the previous networks. The ANet-FSM (opt) architecture outperforms all

the aforesaid networks in every measure with a rank of 2. Though ANet-FSM(opt)

doesn’t perform best in all of the measures, the second-best ranking represents its

stability in identifying both crack and non-crack pixels.

The above discussion evaluates the result of different architectures based on de-

pendent evaluation measures. As mentioned earlier, these measures are highly biased

toward the classification of the overwhelming majority class (non-crack). Nonethe-

less, to perform fair evaluation we have taken into account some measures such as

Precision, Recall, Sensitivity, Specificity, and F1-score.

Table 4.5: Ranked methods based on dependent measures.

Rank True Pos Rate False Pos Rate True Neg Rate False Neg Rate Acc Rate Err
1 ANet-FSM (low) ANet-FSM (low) ANet-FSM (hi) ANet-FSM (hi) ANet-FSM (low) ANet-FSM (low)
2 ANet-FSM (opt) ANet-FSM (opt) ANet-FSM (opt) ANet-FSM (opt) ANet-FSM (opt) ANet-FSM (opt)
3 InspectionNet [54] InspectionNet [54] SegNet-SO [5] SegNet-SO [5] InspectionNet [54] InspectionNet [54]
4 ANet ANet ANet ANet ANet ANet
5 SegNet-SO [5] SegNet-SO [5] SegNet [6] SegNet [6] SegNet-SO [5] SegNet-SO [5]
6 ANet-FSM (hi) ANet-FSM (hi) InspectionNet [54] InspectionNet [54] ANet-FSM (hi) ANet-FSM (hi)
7 SegNet [6] SegNet [6] ANet-FSM (hi) ANet-FSM (hi) SegNet [6] SegNet [6]
8 Gibbs [2] Gibbs [2] Gibbs [2] Gibbs [2] Gibbs [2] Gibbs [2]
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Table 4.6: Ranked methods based on independent measures.

Rank Specificity Sensitivity Precision Recall F1
1 ANet-FSM (hi) ANet-FSM (low) ANet-FSM (hi) ANet-FSM (low) ANet-FSM (low)
2 ANet-FSM (opt) ANet-FSM (opt) ANet-FSM (opt) ANet-FSM (opt) ANet-FSM (opt)
3 SegNet-SO [5] InspectionNet [54] SegNet-SO [5] InspectionNet [54] InspectionNet [54]
4 ANet ANet ANet ANet ANet
5 SegNet [6] SegNet-SO [5] ANet-FSM (low) SegNet-SO [5] ANet-FSM (hi)
6 InspectionNet [54] ANet-FSM (hi) InspectionNet [54] ANet-FSM (hi) SegNet-SO [5]
7 ANet-FSM (low) SegNet [6] SegNet [6] SegNet [6] SegNet [6]
8 Gibbs [2] Gibbs [2] Gibbs [2] Gibbs [2] Gibbs [2]

Gibbs method [3] and SegNet [6] architecture have the lowest precision and recall

score in table 4.4 and 4.3. SegNet-SO architecture has a higher precision rate than

InspectionNet architecture. However, the recall score represents a reverse relationship

between SegNet-SO and InspectionNet. This tension between precision and recall is a

well-known phenomenon within classification problems suffering from class-imbalance

issues. Moreover, specificity and sensitivity represent similar relationships as preci-

sion and recall due to excessive class imbalance present in concrete crack data-sets.

If a network is highly specific, its sensitivity reduces (SegNet-SO) whereas a high

sensitivity rate reduces the specificity of a network(InspectionNet). As a result, the

F1 score is widely used to combine the effects of these measures for any machine

learning architecture. The F1 score of SegNet-SO and InspectionNet represents that

the former is better in terms of overall performance.

On the other hand, the ANet architecture maintains a stable precision, recall,

specificity, and sensitivity scores (all are assigned the same rank in table 4.4). Conse-

quently, its F1 score is better than SegNet-SO and less than InspectionNet because of

lower sensitivity. However, the ANet-FSM architecture with a low threshold achieves

exceptional recall scores with relatively low specificity, resulting in the highest F1
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score of all the methods. If extreme thresholding is applied, ANet-FSM architec-

ture obtains the highest precision and specificity score with moderately low recall

and sensitivity score among all the architectures. The optimal thresholding opera-

tion achieves higher precision, recall, specificity, sensitivity, and F1 scores than all

the networks in table 4.3 and table 4.4. The same ranking in all of the measures in

table 4.4 also demonstrates the stability of the network. This architecture obtains the

highest F1-score among all the computationally expensive networks (SegNet, Inspec-

tionNet, SegNet-SO). Therefore, it can be concluded that this network is appropriate

for use in applications with highly class-imbalanced data.this

We have also represented a ranked position of different deep network architectures

for dependent and independent measures in table 4.5 and table 4.6, respectively. Ac-

cording to our earlier propositions of dependent measures, it is evident from table 4.5,

the ANet-FSM architecture outperforms the existing encoder-decoder architecture for

defect identification despite the bias towards the non-crack class. The independent

measures also represent that the ANet-FSM architecture outperforms the other ex-

isting networks in table 4.6. Moreover, ANet-FSM (hi) is suitable for applications

requiring extremely specific and precise results. ANet-FSM (low) is appropriate for

highly sensitive applications for concrete crack detection. The robustness of ANet-

FSM (opt) toward specificity, sensitivity, precision, and recall makes this suitable for

applications that require stable results.

We have also compared the performance of ANet-FSM architecture with state-of-

the-art crack detection architectures such as DeepCrack [4] and SDDNet [55]. The

results of deep crack and SDDNet were extracted from the experiments reported in [4].

The ANet-FSM architecture was trained and tested using the data-set [4] used for

the experiment in [55]. For comparison metrics, we have taken into consideration the

precision, recall, F1 score, and the processing time. The results are shown in table 4.7.
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Table 4.7: Comparison ANet-FSM architecture with crack detection architectures.
The ANet-FSM architecture was trained and tested on the data-set prepared by
DeepCrack [4].

Method Prec Rec F1 Proceesing time
DeepCrack [4] 86.10% 86.90% 86.50% 109 ms
SDDNet [55] 87.10% 87.00% 87.00% 13.54ms
ANet-FSM 98.2% 78.2% 87.1% 1.14ms

SDDNet architecture achieves the highest F1 score among all the methods. However,

the ANet-FSM architecture achieves the highest precision rate and an F1 score close

to SDDNet. This phenomenon represents the effect of gradient vanishing in lowest in

ANet-FSM among all the methods. Moreover, the processing time of ANet-FSM is

1.14 ms per image, whereas SDDNet has 13.04 ms per image. The processing speed

of ANet-FSM architecture is thirteen-time smaller than the SDDNet architecture.

Considering this significant fast processing time of ANet-FSM architecture, the lower

F1 score is reasonable. Apart from this, this processing time also depicts ANet-FSM

architecture is nominally affected by gradient stability problem.

4.4 Network Complexity Analysis

One of the solution for tackling the gradient vanishing problem of very deep networks

is the reduction of computational complexity. Since the convolutional layers are

responsible for salient feature attribute extraction in CNN architecture [40], most of

the computations are performed by this layer. As a result, the complexity of the

network was measured based on the computations associated with the convolutional

layers. The network complexity is defined as C in equation 4.1
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C =
E+D∑
i=0

(NCi
×Ks)×Nki (4.1)

where NC is the number of convolution layers, Nk is the number of kernels in each

layer, Ks is a m × n dimensional kernel (m is height and n is width), E is the

total number of encoders and D is the total number of decoders. Since the network

architectures discussed in this work use five encoders and five decoders we set the

value of E = 5 and D = 5.

Table 4.8: Comparison of network complexity of different encoder decoder based
architecture. C: network complexity, NC : number of convolutional layersNk: number
of kernels in each convolutional layer, Ks: a m× n dimension kernel

Method Nc Nk Ks C
VGG-16 [47] {†} ⨁ 3x3 38016
SegNet [6] {†, ‡} ⋇ 3x3 72576
InspectionNet [54] ⤰ ⋎ 3x3 34560
ANet-FSM ✜ ⟁ 7x7 12152
No. of Convs. per Encoder (Nc) :
 † = {2,2,3,3,3}, ‡ = {3,3,3,2,2}, 
⤰ = {2,2,2,2,2}, ✜ = {1,1,1,1,1}
No. of Filter Sets per Encoder (Nk) :
⨁ = {64, 128, 256, 512, 512} 
⋇ = {64, 128, 256, 512, 512, 512,512,256, 128, 64}
⋎ = {64, 128, 256, 512, 512, 256, 128, 64}
⋄ = {8, 16, 32, 64, 64, 64,64,32, 16, 8}
⟁= {4,8,16,32,64,64,32,16, 8,4}

To analyze the network complexity we take into consideration three encoder-

decoder architectures in literature, i.e., SegNet [6] and InspectionNet [54]. Since the

encoder and decoder networks in SegNet architecture follow the topology of VGG-16

architecture, we computed the complexity of this network. The number of computa-
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tions required for the ANet-FSM architecture is compared with the aforementioned

network architectures in table 4.8.

The number of total computations performed by VGG-16 architecture is 38016.

Both the encoder and decoder network in SegNet follows VGG-16 architecture topol-

ogy. Consequently, the number of convolution layers, kernels, and final computations

increase by two times of the original VGG-16 architecture. The InspectionNet archi-

tecture performs 3806 fewer computations than SegNet. On the other hand, the ANet

architecture performs 12152 computations. Despite using a larger convolution kernel

this architecture performs 22408 fewer computations than InspectionNet. Usage of a

single convolution layer in each encoder along with less filter numbers, reduced the

computational complexity of ANet-FSM architecture. This aspect of the network

helps eliminating the effect of gradient vanishing problem of deep networks. Further-

more, the precision of the network increases significantly due to this fact. Therefore,

ANet-FSM architecture is the most in-expensive network in terms of computation in

comparison to the networks represented in table 4.8.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

A deep convolutional neural network for concrete crack classification is presented in

this work. A framework for eliminating the effect of gradient vanishing problem for

class imbalanced data-set is presented in this work. Silencing unnecessary feature

space enhances the precision of our framework as well as reduce the effect of gradient

vanishing problem. Moreover, the sensitivity of the architecture to environmental

non-uniformity is reduced by the FSM module. As a result, our architecture is more

precise than the crack detection methods present in the literature. The experimental

results in this study also represent that an enormous amount of unnecessary computa-

tions is performed in deep architectures. Elimination of these computations enhances

the speed and processing of deep networks remarkably, which is important for the

real-time deployment of these architectures. The FSM module selects a feature based

on some threshold in the proposed framework.
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5.2 Future Work

Although the proposed framework achieves the highest precision in crack detection,

the silencing policy is handcrafted. As a result, the framework is highly sensitive to a

certain type of data-set. This sensitivity can be alleviated by designing an optimiza-

tion framework, enabling the network to choose policies based on data-set criteria.

Another future direction of this work would be exploring the area of other concrete

distress identification such as spalling detection using an optimized feature silencing

module. The proposed framework for crack detection in this work is appropriate

for identifying a crack location. However, civil infrastructure inspection requires the

quantification of defects also. Quantifying cracks involve identifying the length and

depth of the crack. The proposed framework is appropriate for identifying crack

length. Quantifying the depth measurement of crack requires depth data. Therefore,

another future direction of this work is identifying the severity of any defect based on

depth data.
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